58 research outputs found

    Sex-specific phenotypes of hyperthyroidism and hypothyroidism in mice

    Get PDF
    Background Thyroid dysfunction is more common in the female population, however, the impact of sex on disease characteristics has rarely been addressed. Using a murine model, we asked whether sex has an influence on phenotypes, thyroid hormone status, and thyroid hormone tissue response in hyper- and hypothyroidism. Methods Hypo- and hyperthyroidism were induced in 5 -month-old female and male wildtype C57BL/6N mice, by LoI/MMI/ClO4 − or T4 i.p. treatment over 7 weeks, and control animals underwent sham treatment (N = 8 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination, and strength), liver function, serum thyroid hormone status, and cellular TH effects on gene expression in brown adipose tissue, heart, and liver. Results Male and female mice showed significant differences in behavioural, functional, metabolic, biochemical, and molecular traits of hyper- and hypothyroidism. Hyperthyroidism resulted in increased locomotor activity in female mice but decreased muscle strength and motor coordination preferably in male animals. Hypothyroidism led to increased water intake in male but not female mice and significantly higher serum cholesterol in male mice. Natural sex differences in body temperature, body weight gain, food and water intake were preserved under hyperthyroid conditions. In contrast, natural sex differences in heart rate disappeared with TH excess and deprivation. The variations of hyper- or hypothyroid traits of male and female mice were not explained by classical T3/T4 serum state. TH serum concentrations were significantly increased in female mice under hyperthyroidism, but no sex differences were found under eu- or hypothyroid conditions. Interestingly, analysis of expression of TH target genes and TH transporters revealed little sex dependency in heart, while sex differences in target genes were present in liver and brown adipose tissue in line with altered functional and metabolic traits of hyper- and hypothyroidism. Conclusions These data demonstrate that the phenotypes of hypo- and hyperthyroidism differ between male and female mice and indicate that sex is an important modifier of phenotypic manifestations

    Entfaltung und Rückfaltung einzelner Multidomänenproteine unter Anwendung molekularer Einschlusstechniken

    No full text

    Reversible and irreversible unfolding of multi-domain proteins

    No full text
    In contrast to single-domain proteins unfolding of larger multi-domain proteins is often irreversible. In a comparative case study on three different multi-domain proteins (phosphoglycerate kinase: PGK and two homologous alpha-amylases: TAKA and BLA) we investigated properties of unfolded states and their ability to fold back into the native state. For this purpose guanidine hydrochloride, alkaline pH, and thermal unfolded states were characterized. Structural alterations upon unfolding and refolding transitions were monitored using fluorescence and CD spectroscopy. Static and dynamic light scattering was employed to follow aggregation processes. Furthermore, proper refolding was also investigated by enzyme activity measurements. While for PGK at least partial reversible unfolding transitions were observed in most cases, we found reversible unfolding for TAKA in the case of alkaline pH and GndHCl induced unfolding. BLA exhibits reversible unfolding only under conditions with high concentrations of protecting osmolytes (glycerol), indicating that aggregation of the unfolded state is the main obstacle to achieve proper refolding for this protein. Structural properties, such as number and size of domains, secondary structure contents and compositions within domains, and domain topology were analyzed and considered in the interpretation of differences in refolding behavior of the investigated proteins
    corecore