103 research outputs found
White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era
The unification of quantum mechanics and general relativity has long been elusive. Only recently have empirical predictions of various possible theories of quantum gravity been put to test. The dawn of multi-messenger high-energy astrophysics has been tremendously beneficial, as it allows us to study particles with much higher energies and travelling much longer distances than possible in terrestrial experiments, but more progress is needed on several fronts. A thorough appraisal of current strategies and experimental frameworks, regarding quantum gravity phenomenology, is provided here. Our aim is twofold: a description of tentative multimessenger explorations, plus a focus on future detection experiments. As the outlook of the network of researchers that formed through the COST Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach (QG-MM)", in this work we give an overview of the desiderata that future theoretical frameworks, observational facilities, and data-sharing policies should satisfy in order to advance the cause of quantum gravity phenomenology
White Paper and Roadmap for Quantum Gravity Phenomenology in the Multi-Messenger Era
The unification of quantum mechanics and general relativity has long been
elusive. Only recently have empirical predictions of various possible theories
of quantum gravity been put to test. The dawn of multi-messenger high-energy
astrophysics has been tremendously beneficial, as it allows us to study
particles with much higher energies and travelling much longer distances than
possible in terrestrial experiments, but more progress is needed on several
fronts.
A thorough appraisal of current strategies and experimental frameworks,
regarding quantum gravity phenomenology, is provided here. Our aim is twofold:
a description of tentative multimessenger explorations, plus a focus on future
detection experiments.
As the outlook of the network of researchers that formed through the COST
Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach
(QG-MM)", in this work we give an overview of the desiderata that future
theoretical frameworks, observational facilities, and data-sharing policies
should satisfy in order to advance the cause of quantum gravity phenomenology.Comment: Submitted to CQG for the Focus Issue on "Quantum Gravity
Phenomenology in the Multi-Messenger Era: Challenges and Perspectives".
Please contact us to express interesst of endorsement of this white pape
Constraints on axion-like particles with the Perseus Galaxy Cluster with MAGIC
Axion-like particles (ALPs) are pseudo-Nambu-Goldstone bosons that emerge in
various theories beyond the standard model. These particles can interact with
high-energy photons in external magnetic fields, influencing the observed
gamma-ray spectrum. This study analyzes 41.3 hrs of observational data from the
Perseus Galaxy Cluster collected with the MAGIC telescopes. We focused on the
spectra the radio galaxy in the center of the cluster: NGC 1275. By modeling
the magnetic field surrounding this target, we searched for spectral
indications of ALP presence. Despite finding no statistical evidence of ALP
signatures, we were able to exclude ALP models in the sub-micro electronvolt
range. Our analysis improved upon previous work by calculating the full
likelihood and statistical coverage for all considered models across the
parameter space. Consequently, we achieved the most stringent limits to date
for ALP masses around 50 neV, with cross sections down to GeV.Comment: 25 pages, 10 figures, accepted for publication in Physics of the Dark
Univers
Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio
MAGIC observations provide compelling evidence of the hadronic multi-TeV emission from the putative PeVatron SNR G106.3+2.7
The SNR G106.3+2.7, detected at 1--100 TeV energies by different -ray
facilities, is one of the most promising PeVatron candidates. This SNR has a
cometary shape which can be divided into a head and a tail region with
different physical conditions. However, it is not identified in which region
the 100 TeV emission is produced due to the limited position accuracy and/or
angular resolution of existing observational data. Additionally, it remains
unclear whether the origin of the -ray emission is leptonic or
hadronic. With the better angular resolution provided by these new MAGIC data
compared to earlier -ray datasets, we aim to reveal the acceleration
site of PeV particles and the emission mechanism by resolving the SNR
G106.3+2.7 with 0.1 resolution at TeV energies. We detected extended
-ray emission spatially coincident with the radio continuum emission at
the head and tail of SNR G106.3+2.7. The fact that we detected a significant
-ray emission with energies above 6.0 TeV from the tail region only
suggests that the emissions above 10 TeV, detected with air shower experiments
(Milagro, HAWC, Tibet AS and LHAASO), are emitted only from the SNR
tail. Under this assumption, the multi-wavelength spectrum of the head region
can be explained with either hadronic or leptonic models, while the leptonic
model for the tail region is in contradiction with the emission above 10 TeV
and X-rays. In contrast, the hadronic model could reproduce the observed
spectrum at the tail by assuming a proton spectrum with a cutoff energy of
PeV for the tail region. Such a high energy emission in this
middle-aged SNR (4--10 kyr) can be explained by considering the scenario that
protons escaping from the SNR in the past interact with surrounding dense gases
at present.Comment: 13 pages, 7 figures, Accepted for publication in A&
A lower bound on intergalactic magnetic fields from time variability of 1ES 0229+200 from MAGIC and Fermi/LAT observations
Extended and delayed emission around distant TeV sources induced by the
effects of propagation of gamma rays through the intergalactic medium can be
used for the measurement of the intergalactic magnetic field (IGMF). We search
for delayed GeV emission from the hard-spectrum TeV blazar 1ES 0229+200 with
the goal to detect or constrain the IGMF-dependent secondary flux generated
during the propagation of TeV gamma rays through the intergalactic medium. We
analyze the most recent MAGIC observations over a 5 year time span and
complement them with historic data of the H.E.S.S. and VERITAS telescopes along
with a 12-year long exposure of the Fermi/LAT telescope. We use them to trace
source evolution in the GeV-TeV band over one-and-a-half decade in time. We use
Monte Carlo simulations to predict the delayed secondary gamma-ray flux,
modulated by the source variability, as revealed by TeV-band observations. We
then compare these predictions for various assumed IGMF strengths to all
available measurements of the gamma-ray flux evolution. We find that the source
flux in the energy range above 200 GeV experiences variations around its
average on the 14 years time span of observations. No evidence for the flux
variability is found in 1-100 GeV energy range accessible to Fermi/LAT.
Non-detection of variability due to delayed emission from electromagnetic
cascade developing in the intergalactic medium imposes a lower bound of
B>1.8e-17 G for long correlation length IGMF and B>1e-14 G for an IGMF of the
cosmological origin. Though weaker than the one previously derived from the
analysis of Fermi/LAT data, this bound is more robust, being based on a
conservative intrinsic source spectrum estimate and accounting for the details
of source variability in the TeV energy band. We discuss implications of this
bound for cosmological magnetic fields which might explain the baryon asymmetry
of the Universe.Comment: 10 pages, 5 figures, accepted to A&A. Corresponding authors: Ievgen
Vovk, Paolo Da Vela (mailto:[email protected]) and Andrii Neronov
(mailto:[email protected]
Multiwavelength Observations of the Blazar VER J0521+211 during an Elevated TeV Gamma-Ray State
We report on a long-lasting, elevated gamma-ray flux state from VER J0521+211 observed by VERITAS, MAGIC, and Fermi-LAT in 2013 and 2014. The peak integral flux above 200 GeV measured with the nightly binned light curve is (8.8 ± 0.4) × 10-7 photons m-2 s-1, or ∼37% of the Crab Nebula flux. Multiwavelength observations from X-ray, UV, and optical instruments are also presented. A moderate correlation between the X-ray and TeV gamma-ray fluxes was observed, and the X-ray spectrum appeared harder when the flux was higher. Using the gamma-ray spectrum and four models of the extragalactic background light (EBL), a conservative 95% confidence upper limit on the redshift of the source was found to be z ≤ 0.31. Unlike the gamma-ray and X-ray bands, the optical flux did not increase significantly during the studied period compared to the archival low-state flux. The spectral variability from optical to X-ray bands suggests that the synchrotron peak of the spectral energy distribution (SED) may become broader during flaring states, which can be adequately described with a one-zone synchrotron self-Compton model varying the high-energy end of the underlying particle spectrum. The synchrotron peak frequency of the SED and the radio morphology of the jet from the MOJAVE program are consistent with the source being an intermediate-frequency-peaked BL Lac object
Long-term multi-wavelength study of 1ES 0647+250
The BL Lac object 1ES 0647+250 is one of the few distant -ray
emitting blazars detected at very high energies (VHE, 100 GeV) during
a non-flaring state. It was detected with the MAGIC telescopes during its low
activity in the years 2009-2011, as well as during three flaring activities in
the years 2014, 2019 and 2020, with the highest VHE flux in the latter epoch.
An extensive multi-instrument data set was collected within several coordinated
observing campaigns throughout these years. We aim to characterise the
long-term multi-band flux variability of 1ES 0647+250, as well as its broadband
spectral energy distribution (SED) during four distinct activity states
selected in four different epochs, in order to constrain the physical
parameters of the blazar emission region under certain assumptions. We evaluate
the variability and correlation of the emission in the different energy bands
with the fractional variability and the Z-transformed Discrete Correlation
Function, as well as its spectral evolution in X-rays and rays. Owing
to the controversy in the redshift measurements of 1ES 0647+250 reported in the
literature, we also estimate its distance in an indirect manner through the
comparison of the GeV and TeV spectra from simultaneous observations with
Fermi-LAT and MAGIC during the strongest flaring activity detected to date.
Moreover, we interpret the SEDs from the four distinct activity states within
the framework of one-component and two-component leptonic models, proposing
specific scenarios that are able to reproduce the available multi-instrument
data.Comment: 20 pages, 7 figures. Accepted in A&A. Corresponding authors: Jorge
Otero-Santos; Daniel Morcuende; Vandad Fallah Ramazani; Daniela Dorner; David
Paneque (mailto: [email protected]
Investigating the blazar TXS 0506+056 through sharp multi-wavelength eyes during 2017-2019
The blazar TXS 0506+056 got into the spotlight of the astrophysical community
in September 2017, when a high-energy neutrino detected by IceCube
(IceCube-170922A) was associated at the 3 level to a -ray
flare from this source. This multi-messenger photon-neutrino association
remains, as per today, the most significant one ever observed. TXS 0506+056 was
a poorly studied object before the IceCube-170922A event. To better
characterize its broad-band emission, we organized a multi-wavelength campaign
lasting 16 months (November 2017 to February 2019), covering the radio-band
(Mets\"ahovi, OVRO), the optical/UV (ASAS-SN, KVA, REM, Swift/UVOT), the X-rays
(Swift/XRT, NuSTAR), the high-energy rays (Fermi/LAT) and the
very-high-energy (VHE) rays (MAGIC). In rays, the behaviour
of the source was significantly different from the 2017 one: MAGIC observations
show the presence of flaring activity during December 2018, while the source
only shows an excess at the 4 level during the rest of the campaign (74
hours of accumulated exposure); Fermi/LAT observations show several short
(days-to-week timescale) flares, different from the long-term brightening of
2017. No significant flares are detected at lower energies. The radio light
curve shows an increasing flux trend, not seen in other wavelengths. We model
the multi-wavelength spectral energy distributions in a lepto-hadronic
scenario, in which the hadronic emission emerges as Bethe-Heitler and
pion-decay cascade in the X-rays and VHE rays. According to the model
presented here, the December 2018 -ray flare was connected to a
neutrino emission that was too brief and not bright enough to be detected by
current neutrino instruments.Comment: 18 pages, 6 figures; in press in Ap
Observations of the Crab Nebula and Pulsar with the Large-Sized Telescope Prototype of the Cherenkov Telescope Array
CTA (Cherenkov Telescope Array) is the next generation ground-based
observatory for gamma-ray astronomy at very-high energies. The Large-Sized
Telescope prototype (\LST{}) is located at the Northern site of CTA, on the
Canary Island of La Palma. LSTs are designed to provide optimal performance in
the lowest part of the energy range covered by CTA, down to GeV.
\LST{} started performing astronomical observations in November 2019, during
its commissioning phase, and it has been taking data since then. We present the
first \LST{} observations of the Crab Nebula, the standard candle of very-high
energy gamma-ray astronomy, and use them, together with simulations, to assess
the basic performance parameters of the telescope. The data sample consists of
around 36 hours of observations at low zenith angles collected between November
2020 and March 2022. \LST{} has reached the expected performance during its
commissioning period - only a minor adjustment of the preexisting simulations
was needed to match the telescope behavior. The energy threshold at trigger
level is estimated to be around 20 GeV, rising to GeV after data
analysis. Performance parameters depend strongly on energy, and on the strength
of the gamma-ray selection cuts in the analysis: angular resolution ranges from
0.12 to 0.40 degrees, and energy resolution from 15 to 50\%. Flux sensitivity
is around 1.1\% of the Crab Nebula flux above 250 GeV for a 50-h observation
(12\% for 30 minutes). The spectral energy distribution (in the 0.03 - 30 TeV
range) and the light curve obtained for the Crab Nebula agree with previous
measurements, considering statistical and systematic uncertainties. A clear
periodic signal is also detected from the pulsar at the center of the Nebula.Comment: Submitted to Ap
- …