211 research outputs found
Parallel State Transfer and Efficient Quantum Routing on Quantum Networks
We study the routing of quantum information in parallel on multi-dimensional
networks of tunable qubits and oscillators. These theoretical models are
inspired by recent experiments in superconducting circuits using Josephson
junctions and resonators. We show that perfect parallel state transfer is
possible for certain networks of harmonic oscillator modes. We further extend
this to the distribution of entanglement between every pair of nodes in the
network, finding that the routing efficiency of hypercube networks is both
optimal and robust in the presence of dissipation and finite bandwidth.Comment: 5 pages, 3 figure
Combined sterno-clavicular approach as an alternative technique in hybrid exclusion of aortic arch aneurysm
<p>Abstract</p> <p>Background</p> <p>We describe a modified access technique for the proximal (open) part of single stage hybrid exclusion of aneurysm of the aortic arch.</p> <p>Case presentation</p> <p>3 patients had a bifurcated Dacron graft for the innominate and left subclavian arteries and an additional end-to-side anastomosis of the left common carotid artery on the limb to the left subclavian artery. With our modification, access to the left subclavian artery is by left subclavicular incision and creation of an anterior tunnel via the left thoracic outlet from the origin of the left subclavian artery along its anatomical course to the subclavicular plane.</p> <p>Discussion</p> <p>Advantages and disadvantages of this technique in relation to anatomy and pathology.</p
The impact of salsalate treatment on serum levels of advanced glycation end products in type 2 diabetes.
OBJECTIVE Salsalate is a nonacetylated salicylate that lowers glucose levels in people with type 2 diabetes (T2D). Here we examined whether salsalate also lowered serum-protein-bound levels of early and advanced glycation end products (AGEs) that have been implicated in diabetic vascular complications. RESEARCH DESIGN AND METHODS Participants were from the Targeting Inflammation Using Salsalate for Type 2 Diabetes (TINSAL-T2D) study, which examined the impact of salsalate treatment on hemoglobin A1c (HbA1c) and a wide variety of other parameters. One hundred eighteen participants received salsalate, 3.5 g/day for 48 weeks, and 109 received placebo. Early glycation product levels (HbA1c and fructoselysine [measured as furosine]) and AGE levels (glyoxal and methylglyoxal hydroimidazolones [G-(1)H, MG-(1)H], carboxymethyllysine [CML], carboxyethyllysine [CEL], pentosidine) were measured in patient serum samples. RESULTS Forty-eight weeks of salsalate treatment lowered levels of HbA1c and serum furosine (P \u3c 0.001) and CML compared with placebo. The AGEs CEL and G-(1)H and MG-(1)H levels were unchanged, whereas pentosidine levels increased more than twofold (P \u3c 0.001). Among salsalate users, increases in adiponectin levels were associated with lower HbA1c levels during follow-up (P \u3c 0.001). Changes in renal and inflammation factor levels were not associated with changes in levels of early or late glycation factors. Pentosidine level changes were unrelated to changes in levels of renal function, inflammation, or cytokines. CONCLUSIONS Salsalate therapy was associated with a reduction in early but not late glycation end products. There was a paradoxical increase in serum pentosidine levels suggestive of an increase in oxidative stress or decreased clearance of pentosidine precursor
Cis-epistasis at the LPA locus and risk of cardiovascular diseases
AIMS Coronary artery disease (CAD) has a strong genetic predisposition. However, despite substantial discoveries made by genome-wide association studies (GWAS), a large proportion of heritability awaits identification. Non-additive genetic-effects might be responsible for part of the unaccounted genetic variance. Here we attempted a proof-of-concept study to identify non-additive genetic effects, namely epistatic interactions, associated with CAD. METHODS AND RESULTS We tested for epistatic interactions in ten CAD case-control studies and UK Biobank with focus on 8,068 SNPs at 56 loci with known associations with CAD risk. We identified a SNP pair located in cis at the LPA locus, rs1800769 and rs9458001, to be jointly associated with risk for CAD (odds ratio OR=1.37, p = 1.07 10-11), peripheral arterial disease (OR = 1.22, p = 2.32 10-4), aortic stenosis (OR = 1.47, p = 6.95 10-7), hepatic lipoprotein(a) (Lp(a)) transcript levels (beta = 0.39, p = 1.41 10-8), and Lp(a) serum levels (beta = 0.58, p = 8.7 10-32), while individual SNPs displayed no association. Further exploration of the LPA locus revealed a strong dependency of these associations on a rare variant, rs140570886, that was previously associated with Lp(a) levels. We confirmed increased CAD risk for heterozygous (relative OR = 1.46, p = 9.97 10-32) and individuals homozygous for the minor allele (relative OR = 1.77, p = 0.09) of rs140570886. Using forward model selection, we also show that epistatic interactions between rs140570886, rs9458001, and rs1800769 modulate the effects of the rs140570886 risk allele. CONCLUSIONS These results demonstrate the feasibility of a large-scale knowledge-based epistasis scan and provide rare evidence of an epistatic interaction in a complex human disease. We were directed to a variant (rs140570886) influencing risk through additive genetic as well as epistatic effects. In summary, this study provides deeper insights into the genetic architecture of a locus important for cardiovascular diseases. TRANSLATIONAL PERSPECTIVE Genetic variants identified by GWAS studies explain about a quarter of the heritability of coronary artery disease by additive genetic effects. Our study demonstrates that non-additive effects contribute to the genetic architecture of the disease as well and identifies complex interaction patterns at the LPA locus, which affect LPA expression, Lp(a) plasma levels and risk of atherosclerosis. This proof-of-concept study encourages systematic searches for epistatic interactions in further studies to shed new light on the aetiology of the disease
Blinding for precision scattering experiments: The MUSE approach as a case study
Human bias is capable of changing the analysis of measured data sufficiently
to alter the results of an experiment. It is incumbent upon modern experiments,
especially those investigating quantities considered contentious in the broader
community, to blind their analysis in an effort to minimize bias. The choice of
a blinding model is experiment specific, but should also aim to prevent
accidental release of results before an analysis is finalized. In this paper,
we discuss common threats to an unbiased analysis, as well as common quantities
that can be blinded in different types of nuclear physics experiments. We use
the Muon Scattering Experiment as an example, and detail the blinding scheme
used therein.Comment: 6 pages, 3 figure
Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects : a randomised double-blind placebo-controlled cross-over study
Objective Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. Design In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. Results A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. Conclusions A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity.Peer reviewe
Genetic and clinical determinants of abdominal aortic diameter: genome-wide association studies, exome array data and Mendelian randomization study
Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of abdominal aortic aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in 10 cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects [Partners Biobank cohort 1 (PBIO)] as replication. Maximum anterior–posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In genome-wide association study (GWAS) on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = −0.02, SE = 0.004, P-value = 2.10 × 10(−8)). The association replicated in the PBIO1 cohort (P-value = 8.19 × 10(−4)). In exome-array single-variant analysis (P-value threshold = 9 × 10(−7)), the lowest P-value was found for rs239259 located in SLC22A20 (beta = 0.007, P-value = 1.2 × 10(−5)). In the gene-based analysis (P-value threshold = 1.85 × 10(−6)), PCSK5 showed an association with AAD (P-value = 8.03 × 10(−7)). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = −0.003, P-value = 0.02), triglycerides (beta = −0.16, P-value = 0.008) and height (beta = 0.03, P-value < 0.0001), known risk factors for AAA, consistent with a causal association with AAD. Our findings point to new biology as well as highlighting gene regions in mechanisms that have previously been implicated in the genetics of other vascular diseases
Genetics of the thrombomodulin-endothelial cell protein C receptor system and the risk of early-onset ischemic stroke
Background and purpose Polymorphisms in coagulation genes have been associated with early-onset ischemic stroke. Here we pursue an a priori hypothesis that genetic variation in the endothelial-based receptors of the thrombomodulin-protein C system (THBD and PROCR) may similarly be associated with early-onset ischemic stroke. We explored this hypothesis utilizing a multi-tage design of discovery and replication. Methods Discovery was performed in the Genetics-of-Early-Onset Stroke (GEOS) Study, a biracial population-based case-control study of ischemic stroke among men and women aged 1549 including 829 cases of first ischemic stroke (42.2% African-American) and 850 age-comparable stroke-free controls (38.1% African-American). Twenty-four single-nucleotide-polymorphisms (SNPs) in THBD and 22 SNPs in PROCR were evaluated. Following LD pruning (r(2)>= 0.8), we advanced uncorrelated SNPs forward for association analyses. Associated SNPs were evaluated for replication in an early-onset ischemic stroke population (onset-ge Results Among GEOS Caucasians, PROCR rs9574, which was in strong LD with 8 other SNPs, and one additional independent SNP rs2069951, were significantly associated with ischemic stroke (rs9574, OR = 1.33, p = 0.003; rs2069951, OR = 1.80, p = 0.006) using an additive-model adjusting for age, gender and population-structure. Adjusting for risk factors did not change the associations; however, associations were strengthened among those without risk factors. PROCR rs9574 also associated with early-onset ischemic stroke in the replication sample (OR = 1.08, p = 0.015), but not older-onset stroke. There were no PROCR associations in African-Americans, nor were there any THBD associations in either ethnicity. Conclusion PROCR polymorphisms are associated with early-onset ischemic stroke in Caucasians.Peer reviewe
Exome-chip meta-analysis identifies novel loci associated with cardiac conduction, including ADAMTS6.
BACKGROUND: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function. However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain unclear. RESULTS: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695 of African descent in our discovery cohort, followed by replication in 111,874 individuals of European ancestry from the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6, significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in connexin 43 gap junction expression, which is essential for myocardial conduction. CONCLUSIONS: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and provides a possible mechanism for the ADAMTS6-associated conduction changes.BH
- …