3,205 research outputs found
DNS of Turbulent Heat Transfer in Impinging Jets at Different Reynolds and Prandtl Numbers
The heat transfer between an impinging circular jet and a flat plate is studied by means of direct numerical simulations (DNS) for different Prandtl numbers of the fluid. The thermal field is resolved for Pr= 1, 0.72, 0.025, and 0.01. The flow is incompressible and the temperature is treated as a passive scalar field. The jet originates from a fully developed turbulent pipe flow and impinges perpendicularly on a smooth solid heated plate placed at two pipe diameters distance from the jet exit section. The values of Reynolds numbers based on the pipe diameter and bulk mean velocity in the pipe are set to Re= 5300 and Re= 10000. Inflow boundary conditions are enforced using a precursor simulation. Heat transfer at the wall is addressed through the Nusselt number distribution and main flow field statistics. At fixed Reynolds number it is shown that the Prandtl number influences the intensity of the Nusselt number at a given radial location, and that the Nusselt number distribution along the plate exhibit similar features at different Prandtl numbers. The characteristic secondary peak in the Nusselt number distribution is found for both Reynolds numbers for Pr= 0.025 and Pr = 0.01. All the simulations presented in this study were performed with the high order spectral element code Nek5000. Generated flow field statistics are available in the open access repository KITOpen
Possible Dibaryons with Strangeness s=-5
In the framework of , the binding energy of the six quark system with
strangeness s=-5 is systematically investigated under the SU(3) chiral
constituent quark model. The single channel calculation with
spins S=0 and 3 and the coupled and channel
calculation with spins S=1 and 2 are considered, respectively. The results show
following observations: In the spin=0 case, is a bound dibaryon
with the binding energy being . In the S=1 case,
is also a bound dibaryon. Its binding energy is ranged from to . In the S=2 and S=3 cases, no evidence of bound dibaryons
are found. The phase shifts and scattering lengths in the S=0 and S=1 cases are
also given.Comment: 10 pages, late
Relative Reactivity of the Metal-Amido versus Metal-Imido Bond in Linked Cp-Amido and Half-Sandwich Complexes of Vanadium
Treatment of (η5-C5H4C2H4NR)V(N-t-Bu)Me (R = Me, i-Pr) and CpV(N-p-Tol)(N-i-Pr2)Me (Cp = η5-C5H5) with B(C6F5)3 or [Ph3C][B(C6F5)4] results in formation of the corresponding cations, [(η5-C5H4C2H4NR)V(N-t-Bu)]+ and [CpV(N-p-Tol)(N-i-Pr2)]+. The latter could also be generated as its N,N-dimethylaniline adduct by treatment of the methyl complex with [PhNMe2H][BAr4] (Ar = Ph, C6F5). Instead, the analogous reaction with the linked Cp-amido precursor results in protonation of the imido-nitrogen atom. Sequential cyclometalation of the amide substituents gave cationic imine complexes [(η5-C5H4C2H4NCR'2)V(NH-t-Bu)]+ (R' = H, Me) and methane. Reaction of cationic [(η5-C5H4C2H4NR)V(N-t-Bu)]+ with olefins affords the corresponding olefin adducts, whereas treatment with 1 or 2 equiv of 2-butyne results in insertion of the alkyne into the vanadium-nitrogen single bond, affording the mono- and bis-insertion products [(η5-C5H4C2H4N(i-Pr)C2Me2)V(N-t-Bu)]+ and [(η5-C5H4C2H4N(i-Pr)C4Me4)V(N-t-Bu)]+. The same reaction with the half-sandwich compound [CpV(N-p-Tol)(N-i-Pr2)]+ results in a paramagnetic compound that, upon alcoholysis, affords sec-butylidene-p-tolylamine, suggesting an initial [2+2] cycloaddition reaction. The difference in reactivity between the V-N bond versus the V=N bond was further studied using computational methods. Results were compared to the isoelectronic titanium system CpTi(NH)(NH2). These studies indicate that the kinetic product in each system is derived from a [2+2] cycloaddition reaction. For titanium, this was found as the thermodynamic product as well, whereas the insertion reaction was found to be thermodynamically more favorable in the case of vanadium.
Direct evidence for significant spin-polarization of EuS in Co/EuS multilayers at room temperature
The new era of spintronics promises the development of nanodevices, where the
electron spin will be used to store information and charge currents will be
replaced by spin currents. For this, ferromagnetic semiconductors at room
temperature are needed. We report on significant room-temperature spin
polarization of EuS in Co/EuS multilayers recorded by x-ray magnetic circular
dichroism (XMCD). The films were found to contain a mixture of divalent and
trivalent europium, but only Eu11 is responsible for the ferromagnetic
behavior of EuS. The magnetic XMCD signal of Eu at room temperature could
unambiguously be assigned to magnetic ordering of EuS and was found to be only
one order of magnitude smaller than that at 2.5 K. The room temperature
magnetic moment of EuS is as large as the one of bulk ferromagnetic Ni. Our
findings pave the path for fabrication of room–temperature spintronic devices
using spin polarized EuS layers
Remnant Fermi surface in the presence of an underlying instability in layered 1T-TaS_2
We report high resolution angle-scanned photoemission and Fermi surface (FS)
mapping experiments on the layered transition-metal dichalcogenide 1T-TaS_2 in
the quasi commensurate (QC) and the commensurate (C) charge-density-wave (CDW)
phase. Instead of a nesting induced partially removed FS in the CDW phase we
find a pseudogap over large portions of the FS. This remnant FS exhibits the
symmetry of the one-particle normal state FS even when passing from the
QC-phase to the C-phase. Possibly, this Mott localization induced transition
represents the underlying instability responsible for the pseudogapped FS
Lifetimes of image-potential states on copper surfaces
The lifetime of image states, which represent a key quantity to probe the
coupling of surface electronic states with the solid substrate, have been
recently determined for quantum numbers on Cu(100) by using
time-resolved two-photon photoemission in combination with the coherent
excitation of several states (U. H\"ofer et al, Science 277, 1480 (1997)). We
here report theoretical investigations of the lifetime of image states on
copper surfaces. We evaluate the lifetimes from the knowledge of the
self-energy of the excited quasiparticle, which we compute within the GW
approximation of many-body theory. Single-particle wave functions are obtained
by solving the Schr\"odinger equation with a realistic one-dimensional model
potential, and the screened interaction is evaluated in the random-phase
approximation (RPA). Our results are in good agreement with the experimentally
determined decay times.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let
The onset of magnetic order in fcc-Fe films on Cu(100)
On the basis of a first-principles electronic structure theory of finite
temperature metallic magnetism in layered materials, we investigate the onset
of magnetic order in thin (2-8 layers) fcc-Fe films on Cu(100) substrates. The
nature of this ordering is altered when the systems are capped with copper.
Indeed we find an oscillatory dependence of the Curie temperatures as a
function of Cu-cap thickness, in excellent agreement with experimental data.
The thermally induced spin-fluctuations are treated within a mean-field
disordered local moment (DLM) picture and give rise to layer-dependent `local
exchange splittings' in the electronic structure even in the paramagnetic
phase. These features determine the magnetic intra- and interlayer interactions
which are strongly influenced by the presence and extent of the Cu cap.Comment: 13 pages, 3 figure
Quark Delocalization, Color Screening and Dibaryons
The quark delocalization and color screening model, a quark potential model,
is used for a systematic search of dibaryon candidates in the and
three flavor world. Color screening which appears in unquenched lattice gauge
calculations and quark delocalization (which is similar to electron
delocalization in molecular physics) are both included. Flavor symmetry
breaking and channel coupling effects are studied. The model is constrained not
only by baryon ground state properties but also by the - scattering phase
shifts. The deuteron and zero energy di-nucleon resonance are both reproduced
qualitatively. The model predicts two extreme types of dibaryonic systems:
``molecular'' like the deuteron, and highly delocalized six-quark systems among
which only a few narrow dibaryon resonances occur in the and three
flavor world. Possible high spin dibaryon resonances are emphasized.Comment: 20 pages, latex, no figure
- …