3,862 research outputs found

    Are Ultra-long Gamma-Ray Bursts different?

    Full text link
    The discovery of a number of gamma-ray bursts with duration exceeding 1,000 seconds, in particular the exceptional case of GRB 111209A with a duration of about 25,000 seconds, has opened the question on whether these bursts form a new class of sources, the so called {\em ultra-long} GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. In this Letter, using the long GRB sample detected by {\em Swift}, we investigate on the statistical properties of ultra-long GRBs and compare them with the overall long burst population. We discuss also on the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 seconds, for which a Wolf Rayet star progenitor is usually invoked. We interpret this result as an indication that an alternative scenario has to be found in order to explain the ultra-long GRB extreme energetics, as well as the mass reservoir and its size that can feed the central engine for such a long time.Comment: 6 pages, submitted to ApJ, minor typo

    Testing for a class of ULGRBs using Swift GRBs

    Full text link
    The question of whether ultra-long GRBs form a population different from that of "regular" long GRBs has been much debated recently and during the conference. We discuss here the data and the evidence that lead to the conclusion that indeed ultra-long GRBs form a different class of high energy transients. The sample of ultra-long GRBs is still poor and the discussion on their origin remain opens, though they might be the signature of PopIII stars. We urge that the design of new instrumentation, such as the SVOM satellite, takes into account the need for the detection of distant ultra-long GRBs.Comment: 7 pages, submitted for the proceedings of the "Swift 10 years of discovery" conference, Rome, December 2-5, 201

    saprEMo: a simplified algorithm for predicting detections of electromagnetic transients in surveys

    Get PDF
    The multi-wavelength detection of GW170817 has inaugurated multi-messenger astronomy. The next step consists in interpreting observations coming from population of gravitational wave sources. We introduce saprEMo, a tool aimed at predicting the number of electromagnetic signals characterised by a specific light curve and spectrum, expected in a particular sky survey. By looking at past surveys, saprEMo allows us to constrain models of electromagnetic emission or event rates. Applying saprEMo to proposed astronomical missions/observing campaigns provides a perspective on their scientific impact and tests the effect of adopting different observational strategies. For our first case study, we adopt a model of spindown-powered X-ray emission predicted for a binary neutron star merger producing a long-lived neutron star. We apply saprEMo on data collected by XMM-Newton and Chandra and during 10410^4 s of observations with the mission concept THESEUS. We demonstrate that our emission model and binary neutron star merger rate imply the presence of some signals in the XMM-Newton catalogs. We also show that the new class of X-ray transients found by Bauer et al. in the Chandra Deep Field-South is marginally consistent with the expected rate. Finally, by studying the mission concept THESEUS, we demonstrate the substantial impact of a much larger field of view in searches of X-ray transients

    Extinction properties of the X-ray bright/optically faint afterglow of GRB 020405

    Full text link
    We present an optical-to-X-ray spectral analysis of the afterglow of GRB 020405. The optical spectral energy distribution not corrected for the extragalactic extinction is significantly below the X-ray extrapolation of the single powerlaw spectral model suggested by multiwavelength studies. We investigate whether considerable extinction could explain the observed spectral ``mismatch'' by testing several types of extinction curves. For the first time we test extinction curves computed with time-dependent numerical simulations of dust grains destruction by the burst radiation. We find that an extinction law weakly depen dent on wavelength can reconcile the unabsorbed optical and X-ray data with the expected synchrotron spectrum. A gray extinction law can be provided by a dust grain size distribution biased toward large grains.Comment: 6 pages, 5 figures, accepted for publication on A&

    Selection effects shaping the Gamma Ray Burst redshift distributions

    Full text link
    Long Gamma Ray Bursts hold the promise of probing star-formation and metal enrichment up to very high redshifts. The present GRB samples with redshift determination are largely incomplete and therefore a careful analysis of selection effects is mandatory before any conclusion can be drawn from the observed GRB redshift distribution. We study and compare three well defined samples of long GRBs detected by Swift, HETE2 and BeppoSAX. We find that Swift GRBs are slighly fainter and harder than BeppoSAX and HETE2 GRBs, as expected due to the higher energy range in which Swift GRBs are detected and localized, compared to BeppoSAX and HETE2. Gas and dust obscuration plays a role in shaping the GRB samples and the present samples of GRBs with redshift. We argue that the majority of the bright Swift GRBs without redshift might actually be z<~2 events therefore the present Swift GRB sample with redshift is biased against low-z GRBs. On the other hand, the detection of bright UV rest-frame afterglows from high-z GRBs, and even from those with large X-ray obscuration, implies a dust amount lower than in nearby GRBs,and/or a different dust composition. If this is the case, the Swift sample of GRBs with redshifts is probably a fair sample of the real high-z GRB population. The absence of high-z GRBs in the BeppoSAX and HETE2 samples of GRBs with redshifts is probably due to the fact at the time of BeppoSAX and HETE2 follow-up faint afterglows of high redshift GRBs will have weaken below the spectroscopic capabilities of even 10m class telescopes. The redshift distribution of a subsample of Swift GRBs with distributions of peak-fluxes, X-ray obscuration and optical magnitude at a fixed observing time similar to those of the BeppoSAX and HETE2 samples, is roughly consistent with BeppoSAX+HETE2 redshift distribution.Comment: 9 pages, back to A&A after referee repor

    Detection of a very bright optical flare from a gamma-ray burst at redshift 6.29

    Full text link
    In this letter we discuss the flux and the behavior of the bright optical flare emission detected by the 25 cm TAROT robotic telescope during the prompt high-energy emission and the early afterglow. We combine our data with simultaneous observations performed in X-rays and we analyze the broad-band spectrum. These observations lead us to emphasize the similarity of GRB 050904 with GRB 990123, a remarkable gamma-ray burst whose optical emission reached 9th magnitude. While GRB 990123 was, until now, considered as a unique event, this observation suggests the existence of a population of GRBs which have very large isotropic equivalent energies and extremely bright optical counterparts. The luminosity of these GRBs is such that they are easily detectable through the entire universe. Since we can detect them to very high redshift even with small aperture telescopes like TAROT, they will constitute powerful tools for the exploration of the high-redshift Universe and might be used to probe the first generation of stars.Comment: 9 pages, 3 figures. Accepted in ApJ
    corecore