432 research outputs found

    Shell Model Monte Carlo method in the pnpn-formalism and applications to the Zr and Mo isotopes

    Full text link
    We report on the development of a new shell-model Monte Carlo algorithm which uses the proton-neutron formalism. Shell model Monte Carlo methods, within the isospin formulation, have been successfully used in large-scale shell-model calculations. Motivation for this work is to extend the feasibility of these methods to shell-model studies involving non-identical proton and neutron valence spaces. We show the viability of the new approach with some test results. Finally, we use a realistic nucleon-nucleon interaction in the model space described by (1p_1/2,0g_9/2) proton and (1d_5/2,2s_1/2,1d_3/2,0g_7/2,0h_11/2) neutron orbitals above the Sr-88 core to calculate ground-state energies, binding energies, B(E2) strengths, and to study pairing properties of the even-even 90-104 Zr and 92-106 Mo isotope chains

    Brownian rectifiers in the presence of temporally asymmetric unbiased forces

    Get PDF
    The efficiency of energy transduction in a temporally asymmetric rocked ratchet is studied. Time asymmetry favours current in one direction and suppresses it in the opposite direction due to which large efficiency ~ 50% is readily obtained. The spatial asymmetry in the potential together with system inhomogeneity may help in further enhancing the efficiency. Fine tuning of system parameters considered leads to multiple current reversals even in the adiabatic regime

    Dynamical Locking of the Chiral and the Deconfinement Phase Transition in QCD

    Full text link
    We study the fixed-point structure of four-fermion interactions in two-flavor QCD with Nc colors close to the finite-temperature phase boundary. In particular, we analyze how the fixed-point structure of four-fermion interactions is related to the confining dynamics in the gauge sector. We show that there exists indeed a mechanism which dynamically locks the chiral phase transition to the deconfinement phase transition. This mechanism allows us to determine a window for the values of physical observables in which the two phase transitions lie close to each other.Comment: 14 pages, 5 figure

    Zone Determinant Expansions for Nuclear Lattice Simulations

    Full text link
    We introduce a new approximation to nucleon matrix determinants that is physically motivated by chiral effective theory. The method involves breaking the lattice into spatial zones and expanding the determinant in powers of the boundary hopping parameter.Comment: 20 pages, 6 figures, revtex4 (version to appear in PRC

    Inequalities for low-energy symmetric nuclear matter

    Full text link
    Using effective field theory we prove inequalities for the correlations of two-nucleon operators in low-energy symmetric nuclear matter. For physical values of operator coefficients in the effective Lagrangian, the S = 1, I = 0 channel correlations must have the lowest energy and longest correlation length in the two-nucleon sector. This result is valid at nonzero density and temperature.Comment: 9 page

    Current control in a tilted washboard potential via time-delayed feedback

    Full text link
    We consider motion of an overdamped Brownian particle in a washboard potential exerted to a static tilting force. The bias yields directed net particle motion, i.e. a current. It is demonstrated that with an additional time-delayed feedback term the particle current can be reversed against the direction of the bias. The control function induces a ratchet-like effect that hinders further current reversals and thus the particle moves against the direction of the static bias. Furthermore, varying the delay time allows also to continuously depreciate and even stop the transport in the washboard potential. We identify and characterize the underlying mechanism which applies to current control in a wide temperature range

    Spin distribution of nuclear levels using static path approximation with random-phase approximation

    Get PDF
    We present a thermal and quantum-mechanical treatment of nuclear rotation using the formalism of static path approximation (SPA) plus random-phase approximation (RPA). Naive perturbation theory fails because of the presence of zero-frequency modes due to dynamical symmetry breaking. Such modes lead to infrared divergences. We show that composite zero-frequency excitations are properly treated within the collective coordinate method. The resulting perturbation theory is free from infrared divergences. Without the assumption of individual random spin vectors, we derive microscopically the spin distribution of the level density. The moment of inertia is thereby related to the spin-cutoff parameter in the usual way. Explicit calculations are performed for 56^Fe; various thermal properties are discussed. In particular, we demonstrate that the increase of the moment of inertia with increasing temperature is correlated with the suppression of pairing correlations.Comment: 12 pages, 8 figures, accepted for publication in Physical Review

    From extended phase space dynamics to fluid theory

    Full text link
    We derive a fluid theory for spin-1/2 particles starting from an extended kinetic model based on a spin-projected density matrix formalism. The evolution equation for the spin density is found to contain a pressure-like term. We give an example where this term is important by looking at a linear mode previously found in a spin kinetic model.Comment: 4 page

    Pressure-induced diamond to beta-tin transition in bulk silicon: a near-exact quantum Monte Carlo study

    Full text link
    The pressure-induced structural phase transition from diamond to beta-tin in silicon is an excellent test for theoretical total energy methods. The transition pressure provides a sensitive measure of small relative energy changes between the two phases (one a semiconductor and the other a semimetal). Experimentally, the transition pressure is well characterized. Density-functional results have been unsatisfactory. Even the generally much more accurate diffusion Monte Carlo method has shown a noticeable fixed-node error. We use the recently developed phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to calculate the relative energy differences in the two phases. In this method, all but the error due to the phaseless constraint can be controlled systematically and driven to zero. In both structural phases we were able to benchmark the error of the phaseless constraint by carrying out exact unconstrained AFQMC calculations for small supercells. Comparison between the two shows that the systematic error in the absolute total energies due to the phaseless constraint is well within 0.5 mHa/atom. Consistent with these internal benchmarks, the transition pressure obtained by the phaseless AFQMC from large supercells is in very good agreement with experiment.Comment: 9 pages, 5 figure

    Current and universal scaling in anomalous transport

    Get PDF
    Anomalous transport in tilted periodic potentials is investigated within the framework of the fractional Fokker-Planck dynamics and the underlying continuous time random walk. The analytical solution for the stationary, anomalous current is obtained in closed form. We derive a universal scaling law for anomalous diffusion occurring in tilted periodic potentials. This scaling relation is corroborated with precise numerical studies covering wide parameter regimes and different shapes for the periodic potential, being either symmetric or ratchet-like ones
    • …
    corecore