132 research outputs found

    Rotating filters permit wide range of optical pyrometry

    Get PDF
    Gear-driven dual filter disks of graduated density vary linearly with respect to rotation, allowing a wide range of photographic pyrometry. this technique is applicable in metallurgy, glass, plastics and refractory research, and crystallography

    Nonadiabatic electron heat pump

    Full text link
    We investigate a mechanism for extracting heat from metallic conductors based on the energy-selective transmission of electrons through a spatially asymmetric resonant structure subject to ac driving. This quantum refrigerator can operate at zero net electronic current as it replaces hot by cold electrons through two energetically symmetric inelastic channels. We present numerical results for a specific heterostructure and discuss general trends. We also explore the conditions under which the cooling rate may approach the ultimate limit given by the quantum of cooling power.Comment: 4 pages, 3 figures; published version, typos correcte

    High-resolution physical--biogeochemical structure of a filament and an eddy of upwelled water off northwest Africa

    Get PDF
    Nutrient rich water upwells offshore of Northwest Africa and is subsequently advected westwards. There it forms eddies and filaments with a rich spatial structure of physical and biological/biogeochemical properties. Here we present a high resolution (2.5 km) section through upwelling filaments and an eddy obtained in May 2018 with a Triaxus towed vehicle equipped with various oceanographic sensors. Physical processes at the mesoscale and submesoscale such as symmetric instability, trapping of fluid in eddies, and subduction of low potential vorticity (which we use as a water mass tracer) water can explain the observed distribution of biological production and export. We found a nitrate excess (higher nitrate concentrations than would be expected from oxygen values if only influenced by production and remineralization processes) core of an anti-cyclonic mode water eddy. We also found a high nitrate concentration region of ~5 km width in the mixed layer where symmetric instability appears to have injected nutrients from below into the euphotic zone. A similar region a little further south had high chlorophyll-a concentrations suggesting that nutrients had been injected there a few days earlier. Considering that such interactions of physics and biology are ubiquitous in the world's upwelling regions, we assume that they have strong influences on the productivity of such systems and their role in CO2 uptake. The intricate interplay of different parameters at kilometer scale needs to be taken into account when interpreting single profile and/or bottle data in dynamically active regions of the ocean

    Coherent charge transport through molecular wires: influence of strong Coulomb repulsion

    Full text link
    We derive a master equation for the electron transport through molecular wires in the limit of strong Coulomb repulsion. This approach is applied to two typical situations: First, we study transport through an open conduction channel for which we find that the current exhibits an ohmic-like behaviour. Second, we explore the transport properties of a bridged molecular wire, where the current decays exponentially as a function of the wire length. For both situations, we discuss the differences to the case of non-interacting electrons.Comment: 15 pages, 4 figures, elsart style, accepted at Chem Phy

    Coulomb blockade effects in driven electron transport

    Full text link
    We study numerically the influence of strong Coulomb repulsion on the current through molecular wires that are driven by external electromagnetic fields. The molecule is described by a tight-binding model whose first and last site is coupled to a respective lead. The leads are eliminated within a perturbation theory yielding a master equation for the wire. The decomposition into a Floquet basis enables an efficient treatment of the driving field. For the electronic excitations in bridged molecular wires, we find that strong Coulomb repulsion significantly sharpens resonance peaks which broaden again with increasing temperature. By contrast, Coulomb blockade has only a small influence on effects like non-adiabatic electron pumping and coherent current suppression.Comment: 9 pages, 7 figures. Added a plot for temperature dependence of resonance peaks. Published versio

    Mesoscale features create hotspots of carbon uptake in the Antarctic Circumpolar Current

    Get PDF
    The influence of eddy structures on the seasonal depletion of dissolved inorganic carbon (DIC) and carbon dioxide (CO2) disequilibrium was investigated during a trans-Atlantic crossing of the Antarctic Circumpolar Current (ACC) in austral summer 2012. The Georgia Basin, downstream of the island of South Georgia (54-55°S, 36-38°W) is a highly dynamic region due to the mesoscale activity associated with the flow of the Subantarctic Front (SAF) and Polar Front (PF). Satellite sea-surface height and chlorophyll-a anomalies revealed a cyclonic cold core that dominated the northern Georgia Basin that was formed from a large meander of the PF. Warmer waters influenced by the SAF formed a smaller anticyclonic structure to the east of the basin. Both the cold core and warm core eddy structures were hotspots of carbon uptake relative to the rest of the ACC section during austral summer. This was most amplified in the cold core where greatest CO2 undersaturation (-78 µatm) and substantial surface ocean DIC deficit (5.1 mol m-2) occurred. In the presence of high wind speeds, the cold core eddy acted as a strong sink for atmospheric CO2 of 25.5 mmol m-2 day-1. Waters of the warm core displayed characteristics of the Polar Frontal Zone (PFZ), with warmer upper ocean waters and enhanced CO2 undersaturation (-59 µatm) and depletion of DIC (4.9mol m-2). A proposed mechanism for the enhanced carbon uptake across both eddy structures is based on the Ekman eddy pumping theory: (i) the cold core is seeded with productive (high chlorophyll-a) waters from the Antarctic Zone and sustained biological productivity through upwelled nutrient supply that counteracts DIC inputs from deep waters; (ii) horizontal entrainment of low-DIC surface waters (biological uptake) from the PFZ downwell within the warm core and cause relative DIC-depletion in the upper water column. The observations suggest that the formation and northward propagation of cold core eddies in the region of the PF could project low-DIC waters towards the site of Antarctic Intermediate Water formation and enhance CO2 drawdown into the deep ocean

    Controls of primary production in two phytoplankton blooms in the Antarctic Circumpolar Current

    Get PDF
    The Antarctic Circumpolar Current has a high potential for primary production and carbon sequestration through the biological pump. In the current study, two large-scale blooms observed in 2012 during a cruise with R.V. Polarstern were investigated with respect to phytoplankton standing stocks, primary productivity and nutrient budgets. While net primary productivity was similar in both blooms, chlorophyll a –specific photosynthesis was more efficient in the bloom closer to the island of South Georgia (39 °W, 50 °S) compared to the open ocean bloom further east (12 °W, 51 °S). We did not find evidence for light being the driver of bloom dynamics as chlorophyll standing stocks up to 165 mg m-2 developed despite mixed layers as deep as 90 m. Since the two bloom regions differ in their distance to shelf areas, potential sources of iron vary. Nutrient (nitrate, phosphate, silicate) deficits were similar in both areas despite different bloom ages, but their ratios indicated more pronounced iron limitation at 12 °W compared to 39 °W. While primarily the supply of iron and not the availability of light seemed to control onset and duration of the blooms, higher grazing pressure could have exerted a stronger control toward the declining phase of the blooms
    corecore