12 research outputs found
Local Strain Heterogeneity Influences the Optoelectronic Properties of Halide Perovskites
Halide perovskites are promising semiconductors for optoelectronics, yet thin films show substantial microscale heterogeneity. Understanding the origins of these variations is essential for mitigating parasitic losses such as non-radiative decay. Here, we probe the structural and chemical origins of the heterogeneity by utilizing scanning X-ray diffraction beamlines at two different synchrotrons combined with high-resolution transmission electron microscopy to spatially characterize the crystallographic properties of individual micrometer-sized perovskite grains in high-quality films. We reveal new levels of heterogeneity on the ten-micrometer scale (super-grains) and even ten-nanometer scale (sub-grain domains). By directly correlating these properties with their corresponding local time-resolved photoluminescence properties, we find that regions showing the greatest luminescence losses correspond to strained regions, which arise from enhanced defect concentrations. Our work reveals remarkably complex heterogeneity across multiple length scales, shedding new light on the defect tolerance of perovskites
In situ simultaneous photovoltaic and structural evolution of perovskite solar cells during film formation
Metal-halide perovskites show remarkably clean semiconductor behaviour, as evidenced by their excellent solar cell performance, in spite of the presence of many structural and chemical defects. Here, we show how this clean semiconductor performance sets in during the earliest phase of conversion from the metal salts and organic-based precursors and solvent, using simultaneous in situ synchrotron X-ray and in operando current–voltage measurements on films prepared on interdigitated back-contact substrates. These structures function as working solar cells as soon as sufficient semiconductor material is present across the electrodes. We find that at the first stages of conversion from the precursor phase, at the percolation threshold for bulk conductance, high photovoltages are observed, even though the bulk of the material is still present as precursors. This indicates that at the earliest stages of perovskite structure formation, the semiconductor gap is already well-defined and free of sub-gap trap states. The short circuit current, in contrast, continues to grow until the perovskite phase is fully formed, when there are bulk pathways for charge diffusion and collection. This work reveals important relationships between the precursors conversion and device performance and highlights the remarkable defect tolerance of perovskite materials
Elucidating the Role of Ligand Engineering on Local and Macroscopic Charge‐Carrier Transport in NaBiS2 Nanocrystal Thin Films
Ternary chalcogenides have emerged as potential candidates for ultrathin photovoltaics, and NaBiS2 nanocrystals (NCs) have gained appeal because of their months-long phase-stability in air, high absorption coefficients >105 cm−1, and a pseudo-direct bandgap of 1.4 eV. However, previous investigations into NaBiS2 NCs used long-chain organic ligands separating individual NCs during synthesis, which severely limits macroscopic charge-carrier transport. In this work, these long-chain ligands are exchanged for short iodide-based ligands, allowing to understand the macroscopic charge-carrier transport properties of NaBiS2 and evaluate its photovoltaic potential in more depth. It is found that ligand exchange results in simultaneous improvements in intra-NC (microscopic) and inter-NC (macroscopic) mobilities, while charge-carrier localization still takes place, which places a fundamental limit on the transport lengths achievable. Despite this limitation, the high absorption coefficients enable ultrathin (55 nm thick) solar absorbers to be used in photovoltaic devices, which have peak external quantum efficiencies > 50%. In addition, temperature-dependent transient current measurements uncover a small activation energy barrier of 88 meV for ion migration, which accounts for the strongly hysteretic behavior of NaBiS2 photovoltaic devices. This work not only reveals how the charge-carrier transport properties of NaBiS2 NCs over several length and time scales are influenced by ligand engineering, but also unveils the facile ionic transport in this material, which limits the potential of NaBiS2 in photovoltaics. On the other hand, the discovery shows that there are opportunities to use this material in memristors, electrolytes, and other applications requiring ionic conduction
Strong absorption and ultrafast localisation in NaBiS2 nanocrystals with slow charge carrier recombination
I V VI2 ternary chalcogenides are gaining attention as earth abundant, nontoxic, and air stable absorbers for photovoltaic applications. However, the semiconductors explored thus far have slowly rising absorption onsets, and their charge carrier transport is not well understood yet. Herein, we investigate cation disordered NaBiS2 nanocrystals, which have a steep absorption onset, with absorption coefficients reaching gt;105 cm amp; 8722;1 just above its pseudo direct bandgap of 1.4 eV. Surprisingly, we also observe an ultrafast picosecond time scale photoconductivity decay and long lived charge carrier population persisting for over onemicrosecond in NaBiS2 nanocrystals. These unusual features arise because of the localised, non bonding S p character of the upper valence band, which leads to a high density of electronic states at the band edges, ultrafast localisation of spatially separated electrons and holes, as well as the slow decay of trapped holes. Thiswork reveals the critical role of cation disorder in these systems on both absorption characteristics and charge carrier kinetic
An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42, 400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. © 2021, The Author(s)
Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures
Funder: 2017 SGR 329 Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706)Funder: This article is based upon work from COST Action StableNextSol MP1307 supported by COST (European Cooperation in Science and Technology). M. V. K., E. A. K., V. B., and A. Osherov thank the financial support of the United States – Israel Binational Science Foundation (grant no. 2015757). E. A. K., A. A., and I. V.-F. acknowledge a partial support from the SNaPSHoTs project in the framework of the German-Israeli bilateral R&D cooperation in the field of applied nanotechnology. M. S. L. thanks the financial support of NSF (ECCS, award #1610833). S. C., M. Manceau and M. Matheron thank the financial support of European Union’s Horizon 2020 research and innovation programme under grant agreement No 763989 (APOLO project). F. De R. and T. M. W. would like to acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) through the SPECIFIC Innovation and Knowledge Centre (EP/N020863/1) and express their gratitude to the Welsh Government for their support of the Ser Solar programme. P. A. T. acknowledges financial support from Russian Science Foundation (project No. 19-73-30020). J.K. acknowledges the support by the Solar Photovoltaic Academic Research Consortium II (SPARC II) project, gratefully funded by WEFO. M.K.N. acknowledges financial support from Innosuisse project 25590.1 PFNM-NM, Solaronix, Aubonne, Switzerland. C.-Q. M. would like to acknowledge The Bureau of International Cooperation of Chinese Academy of Sciences for the support of ISOS11 and the Ministry of Science and Technology of China for the financial support (No 2016YFA0200700). N.G.P. acknowledges financial support from the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT Future Planning (MSIP) of Korea under contracts NRF-2012M3A6A7054861 and NRF-2014M3A6A7060583 (Global Frontier R&D Program on Center for Multiscale Energy System). CSIRO’s contribution to this work was conducted with funding support from the Australian Renewable Energy Agency (ARENA) through its Advancing Renewables Program. A. F. N gratefully acknowledges support from FAPESP (Grant 2017/11986-5) and Shell and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Y.-L.L. and Q.B. acknowledge support from the National Science Foundation Division of Civil, Mechanical and Manufacturing Innovation under award #1824674. S.D.S. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement No. 756962), and the Royal Society and Tata Group (UF150033). The work at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy (DOE) under contract DE-AC36-08GO28308 with Alliance for Sustainable Energy LLC, the manager and operator of the National Renewable Energy Laboratory. The authors (J.J.B, J.M.L., M.O.R, K.Z.) acknowledge support from the De-risking halide perovskite solar cells program of the National Center for Photovoltaics, funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. H.J.S. acknowledges the support of EPSRC UK, Engineering and Physical Sciences Research Council. V.T. and M. Madsen acknowledges ‘Villum Foundation’ for funding of the project CompliantPV, under project number 13365. M. Madsen acknowledges Danmarks Frie Forskningsfond, DFF FTP for funding of the project React-PV, No. 8022-00389B. M.G. and S.M.Z. thank the King Abdulaziz City for Science and technology (KACST) for financial support. S.V. acknowledges TKI-UE/Ministry of Economic Affairs for financial support of the TKI-UE toeslag project POP-ART (No. 1621103). M.L.C. and H.X. acknowledges the support from Spanish MINECO for the grant GraPErOs (ENE2016-79282-C5-2-R), the OrgEnergy Excellence Network CTQ2016-81911- REDT, the Agència de Gestiód'Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia research group 2017 SGR 329 and the Xarxa de Referència en Materials Avançats per a l'Energia (Xarmae). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme / Generalitat de Catalunya.Abstract: Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis
Observation and Mediation of the Presence of Metallic Lead in Organic Inorganic Perovskite Films
We have employed soft and hard X-ray
photoelectron spectroscopies to study the depth-dependent chemical
composition of mixed-halide perovskite thin films used in high-performance
solar cells. We detect substantial amounts of metallic lead in the
perovskite films, which correlate with significant density of states
above the valence band maximum. The metallic lead content is higher
in the bulk of the perovskite films than at the surface. Using an
optimized postanneal process in air, we can reduce the metallic lead
content in the perovskite film. This process reduces the amount of
metallic lead and a corresponding increase in the photoluminescence
quantum efficiency of the perovskite films can be observed. This correlation
indicates that metallic lead impurities are likely a key defect whose
concentration can be controlled by simple annealing procedures in
order to increase the performance for perovskite solar cells
Electronic Properties of Meso Superstructured and Planar Organometal Halide Perovskite Films Charge Trapping, Photodoping, and Carrier Mobility
Solution-processed organometal trihalide perovskite solar cells are attracting increasing interest, leading to high performances over 15% in thin film architectures. Here, we probe the presence of sub gap states in both solid and mesosuperstructured perovskite films and determine that they strongly influence the photoconductivity response and splitting of the quasi-Fermi levels in films and solar cells. We find that while the planar perovskite films are superior to the mesosuperstructured films in terms of charge carrier mobility (in excess of 20 cm(2) V(-1) s(-1)) and emissivity, the planar heterojunction solar cells are limited in photovoltage by the presence of sub gap states and low intrinsic doping densities
How To Quantify the Efficiency Potential of Neat Perovskite Films Perovskite Semiconductors with an Implied Efficiency Exceeding 28
Perovskite photovoltaic PV cells have demonstrated power conversion efficiencies PCE that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1 amp; 8208;sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non amp; 8208;radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open amp; 8208;circuit voltage and the internal quasi amp; 8208;Fermi level splitting QFLS , the transport resistance amp; 8208;free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity amp; 8208;dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non amp; 8208;radiative fill factor and open amp; 8208;circuit voltage loss. It is found that potassium amp; 8208;passivated triple cation perovskite films stand out by their exceptionally high implied PCEs gt; 28 , which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limi