130 research outputs found
Finite-Blocklength Bounds on the Maximum Coding Rate of Rician Fading Channels with Applications to Pilot-Assisted Transmission
We present nonasymptotic bounds on the maximum coding rate achievable over a
Rician block-fading channel for a fixed packet size and a fixed packet error
probability. Our bounds, which apply to the scenario where no a priori channel
state information is available at the receiver, allow one to quantify the
tradeoff between the rate gains resulting from the exploitation of
time-frequency diversity and the rate loss resulting from fast channel
variations and pilot-symbol overhead
On Medium Access and Physical Layer Standards for Cooperative Intelligent Transport Systems in Europe
In this paper, we will outline the current European development of wireless communications to support cooperative Intelligent Transport Systems (ITS). The focus will be on spectrum allocation and the physical and medium access control layers of the ITS-G5 access technology, which is under specification by the European Telecommunications Standards Institute (ETSI). The European ITS architecture and European standardization will also be briefly discussed
On Channel Estimation for 802.11p in Highly Time-Varying Vehicular Channels
Vehicular wireless channels are highly time-varying and the pilot pattern in
the 802.11p orthogonal frequency-division multiplexing frame has been shown to
be ill suited for long data packets. The high frame error rate in off-the-shelf
chipsets with noniterative receiver configurations is mostly due to the use of
outdated channel estimates for equalization. This paper deals with improving
the channel estimation in 802.11p systems using a cross layered approach, where
known data bits are inserted in the higher layers and a modified receiver makes
use of these bits as training data for improved channel estimation. We also
describe a noniterative receiver configuration for utilizing the additional
training bits and show through simulations that frame error rates close to the
case with perfect channel knowledge can be achieved.Comment: 6 pages, 11 figures, conferenc
On Optimum Causal Cognitive Spectrum Reutilization Strategy
In this paper we study opportunistic transmission strategies for cognitive radios (CR) in which causal noisy observation from a primary user(s) (PU) state is available. PU is assumed to be operating in a slotted manner, according to a two-state Markov model. The objective is to maximize utilization ratio (UR), i.e., relative number of the PU-idle slots that are used by CR, subject to interference ratio (IR), i.e., relative number of the PU-active slots that are used by CR, below a certain level. We introduce an a-posteriori LLR-based cognitive transmission strategy and show that this strategy is optimum in the sense of maximizing UR given a certain maximum allowed IR. Two methods for calculating threshold for this strategy in practical situations are presented. One of them performs well in higher SNRs but might have too large IR at low SNRs and low PU activity levels, and the other is proven to never violate the allowed IR at the price of a reduced UR. In addition, an upper-bound for the UR of any CR strategy operating in the presence of Markovian PU is presented. Simulation results have shown a more than 116% improvement in UR at SNR of -3dB and IR level of 10% with PU state estimation. Thus, this opportunistic CR mechanism possesses a high potential in practical scenarios in which there exists no information about true states of PU
Sensing or Transmission: Causal Cognitive Radio Strategies with Censorship
This paper introduces a novel opportunistic transmission strategy for cognitive radios (CRs). The primary user (PU) is assumed to transmit in a time-slotted manner according to a two-state Markov model, and the CR is either sensing, that is, obtaining a causal, noisy observation of a primary user (PU) state, or transmitting, but not both at the same time. In other words, the CR observations of the PU are censored whenever the CR is transmitting. The objective of the CR transmission strategy is to maximize the utilization ratio (UR), i.e., the relative number of the PU-idle slots that are used by the CR, subject to that the interference ratio (IR), i.e., the relative number of the PU-active slots that are used by the CR, is below a certain level. We introduce an a-posteriori LLR-based CR transmission strategy, called CLAPP, and evaluate this strategy in terms of the achievable UR for different PU model parameters and received signal-to-noise ratios (SNRs). The performance of CLAPP is compared with a simple censored energy detection scheme. Simulation results show that CLAPP has 52% gain in UR over the best censored energy detection scheme for a maximum IR level of 10% and an SNR of -2dB. \ua9 2002-2012 IEEE
An LLR-based Cognitive Transmission Strategy for Higher Spectrum Reutilization
Reutilization of the spectrum licensed to services with low occupancy is of great interest for cognitive radios (CRs). To achieve this goal, we introduce a simple hidden Markov model which captures the primary users activity, signal uncertainties, and noise. For evaluating the performance of any CR, two new criteria are presented entitled spectrum utilization ratio (UR) and interference ratio (IR). Based on this model and new measures, a new a-posterior log-likelihood-ratio based CR is designed and implemented. Its performance is compared with standard energy-detection based spectrum-sensing CR. We demonstrate more than 300% increase in UR for up to 1% allowed interference at the SNR of -5dB
Short Packets over Block-Memoryless Fading Channels: Pilot-Assisted or Noncoherent Transmission?
We present nonasymptotic upper and lower bounds on the maximum coding rate
achievable when transmitting short packets over a Rician memoryless
block-fading channel for a given requirement on the packet error probability.
We focus on the practically relevant scenario in which there is no \emph{a
priori} channel state information available at the transmitter and at the
receiver. An upper bound built upon the min-max converse is compared to two
lower bounds: the first one relies on a noncoherent transmission strategy in
which the fading channel is not estimated explicitly at the receiver; the
second one employs pilot-assisted transmission (PAT) followed by
maximum-likelihood channel estimation and scaled mismatched nearest-neighbor
decoding at the receiver. Our bounds are tight enough to unveil the optimum
number of diversity branches that a packet should span so that the energy per
bit required to achieve a target packet error probability is minimized, for a
given constraint on the code rate and the packet size. Furthermore, the bounds
reveal that noncoherent transmission is more energy efficient than PAT, even
when the number of pilot symbols and their power is optimized. For example, for
the case when a coded packet of symbols is transmitted using a channel
code of rate bits/channel use, over a block-fading channel with block
size equal to symbols, PAT requires an additional dB of energy per
information bit to achieve a packet error probability of compared to
a suitably designed noncoherent transmission scheme. Finally, we devise a PAT
scheme based on punctured tail-biting quasi-cyclic codes and ordered statistics
decoding, whose performance are close ( dB gap at packet error
probability) to the ones predicted by our PAT lower bound. This shows that the
PAT lower bound provides useful guidelines on the design of actual PAT schemes.Comment: 30 pages, 5 figures, journa
- âŠ