1,245 research outputs found
The roles of dynamical variability and aerosols in cirrus cloud formation
International audienceThe probability of occurrence of ice crystal number densities in young cirrus clouds is examined based on airborne measurements. The observations have been carried out at midlatitudes in both hemispheres at equivalent latitudes (~52?55° N/S) during the same season (local autumn in 2000). The in situ measurements considered in the present study include temperatures, vertical velocities, and ice crystal concentrations, the latter determined with high precision and accuracy using a counterflow virtual impactor. Most young cirrus clouds typically contain high number densities (1?10 cm?3) of small (diameter -1. A second mode containing larger crystals extends from ~1 cm?3 to low concentrations close to the detection threshold (~3Ă104cm?3) and is associated with lower updraft speeds. Results of a statistical analysis provide compelling evidence that the dynamical variability of vertical air motions on the mesoscale is the key factor determining the observed probability distributions of pristine ice crystal concentrations in cirrus. Other factors considered are variations of temperature as well as size, number, and ice nucleation thresholds of the freezing aerosol particles. The variability in vertical velocities is likely caused by atmospheric waves. Inasmuch as gravity waves are widespread, mesoscale variability in vertical velocities can be viewed as a universa feature of young cirrus clouds. Large-scale models that do not account for this subgrid-scale variability yield erroneous predictions of the variability of basic cirrus cloud properties. Climate change may bring about changes in the global distribution of updraft speeds, mean air temperatures, and aerosol properties. As shown in this work, these changes could significantly modify the probability distribution of cirrus ice crystal concentrations. This study emphasizes the key role of vertical velocities and mesoscale variability in vertical velocities in controlling cirrus properties. The results suggest that, in any effort to ascribe cause to trends of cirrus cloud properties, a careful evaluation of dynamical changes in cloud formation should be done before conclusions regarding the role of other anthropogenic factors, such as changes in aerosol composition, are made
An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten
International audienceAerosol size distributions have been measured at the Swedish background station Aspvreten (58.8° N, 17.4° E). Different states of the aerosol were determined using a novel application of cluster analysis. The analysis resulted in eight different clusters capturing different stages of the aerosol lifecycle. The atmospheric aerosol size distributions were interpreted as belonging to fresh, intermediate and aged types of size distribution. With aid of back trajectory analysis we present statistics concerning the relation of source area and different meteorological parameters using a non-Lagrangian approach. Source area is argued to be important although not sufficient to describe the observed aerosol properties. Especially processing by clouds and precipitation is shown to be crucial for the evolution of the aerosol size distribution. As much as 60% of the observed size distributions present features that are likely to be related to cloud processes or wet deposition. The lifetime properties of different sized aerosols are discussed by means of measured variability of the aerosol size distribution. Processing by clouds and precipitation is shown to be especially crucial in the size range 100 nm and larger. This indicates an approximate limit for activation in clouds to 100 nm in this type of environment. The aerosol lifecycle is discussed. Size distributions indicating signs of recent new particle formation (~30% of the observed size distributions) represent the first stage in the lifecycle. Aging of the aerosol size distribution may follow two branches: either growth by condensation and coagulation or processing by non-precipitating clouds. In both cases mass is accumulated. Wet removal is the main process capable of removing aerosol mass. Wet deposition is argued to be an important mechanism in reaching a state where nucleation may occur (i.e. sufficiently low aerosol surface area) in environments similar to the one studied
Explicit simulation of aerosol physics in a cloud-resolving model
International audienceThe role of convection in introducing aerosols and promoting the formation of new particles to the upper troposphere has been examined using a cloud-resolving model coupled with an interactive explicit aerosol module. A baseline simulation suggests good agreement in the upper troposphere between modeled and observed results including concentrations of aerosols in different size ranges, mole fractions of key chemical species, and concentrations of ice particles. In addition, a set of 34 sensitivity simulations has been carried out to investigate the sensitivity of modeled results to the treatment of various aerosol physical and chemical processes in the model. The size distribution of aerosols is proved to be an important factor in determining the aerosols' fate within the convective cloud. Nucleation mode aerosols (02SO4. Accumulation mode aerosols (d>?31.0 nm) are almost completely removed by nucleation (activation of cloud droplets) and impact scavenging. However, a substantial part (up to 10% of the boundary layer concentration) of the Aitken mode aerosol population (5.84 nm<?d<?31.0 nm) reaches the top of the cloud and the free troposphere. These particles may continually survive in the upper troposphere, or over time form ice crystals, both that could impact the atmospheric radiative budget. The sensitivity simulations performed indicate that critical processes in the model causing a substantial change in the upper tropospheric Aitken mode number concentration are coagulation, condensation, nucleation scavenging, nucleation of aerosols and the transfer of aerosol mass and number between different aerosol bins. In particular, for aerosols in the Aitken mode to grow to CCN size, coagulation appears to be more important than condensation. Less important processes are dry deposition, impact scavenging and the initial vertical distribution and concentration of aerosols. It is interesting to note that in order to sustain a vigorous storm cloud, the supply of CCN must be continuous over a considerably long time period of the simulation. Hence, the treatment of the growth of particles is in general much more important than the initial aerosol concentration itself
Single particle analysis of the accumulation mode aerosol over the northeast Amazonian tropical rain forest, Surinam, South America
International audienceSingle particle analysis of aerosols particles larger than 0.2 ?m diameter was performed on 24 samples collected over Surinam tropical rain forest and in the adjacent marine boundary layer (MBL) during the LBA-CLAIRE 98 campaign in March 1998. Elemental composition and morphology of 2308 particles was determined using SEM-EDX. The aerosol particles were divided into seven groups according to their chemical composition: organic particles, mineral dust, aged mineral dust, sea salt, aged sea salt, Ca-rich, and biogenic aerosol. However the organic material in aerosol particles cannot be identified directly by SEM-EDX, we present indirect method of detection of organic material using this technique. Samples were further divided with respect to the distinct atmospheric layers present in the tropical troposphere including MBL, continental mixed layer, cloud convective layer, free troposphere and region of deep convection outflow. The organic and mineral dust particles are two major groups observed over the rainforest. In the MBL also sea salt particles represented a large fraction between 15 and 27%. The organic particles control much of the chemical characteristic of the aerosol in the continental tropical troposphere. Their abundance ranged from less than 20% in the MBL to more than 90% in the free troposphere between 4.5- and 12.6-km altitude. During the transport of the air masses from the MBL over the rain forest, fraction of organic aerosol particles more than doubled, reaching 40?60% in the continental boundary layer. This increase was attributed to direct emissions of biogenic aerosols from the tropical vegetation. The high fraction of the organic accumulation mode particles in the upper tropical troposphere could be a good indicator for the air masses originated over the tropical rain forest
Contribution of residential wood combustion to hourly winter aerosol in Northern Sweden determined by positive matrix factorization
International audienceThe combined effect of residential wood combustion (RWC) emissions with stable atmospheric conditions, which is a frequent occurrence in Northern Sweden during wintertime, can deteriorate the air quality even in small towns. To estimate the contribution of RWC to the total atmospheric aerosol loading, the positive matrix factorization (PMF) method was applied to hourly mean particle number size distributions measured in a residential area in Lycksele during winter 2005/2006. The sources were identified based on the particle number size distribution profiles of the PMF factors, the diurnal contributions patterns estimated by PMF for both weekends and weekdays, and correlation of the modeled particle number concentration per factor with measured aerosol mass concentrations (PM10, PM1, and light-absorbing carbon MLAC). Through these analyses, the factors were identified as local traffic (factor 1), local RWC (factor 2), and local RWC plus long-range transport (LRT) of aerosols (factor 3). In some occasions, it was difficult to detach the contributions of local RWC from background concentrations since their particle number size distributions partially overlapped and the model was not able to separate these two sources. As a consequence, we report the contribution of RWC as a range of values, being the minimum determined by factor 2 and the possible maximum as the contributions of both factors 2 and 3. A multiple linear regression (MLR) of observed PM10, PM1, total particle number, and MLAC concentrations is carried out to determine the source contribution to these aerosol variables. The results reveal RWC is an important source of atmospheric particles in the size range 25?606 nm (44?57%), PM10 (36?82%), PM1 (31?83%), and MLAC (40?76%) mass concentrations in the winter season. The contribution from RWC is especially large on weekends between 18:00 LT and midnight whereas local traffic emissions show similar contributions every day
Enabling Accurate Cross-Layer PHY/MAC/NET Simulation Studies of Vehicular Communication Networks
Vehicle-to-vehicle and vehicle-to-roadside communications is required for numerous applications that aim at improving traffic safety and efficiency. In this setting, however, gauging system performance through field trials can be very expensive especially when the number of studied vehicles is high. Therefore, many existing studies have been conducted using either network or physical layer simulators; both approaches are problematic. Network simulators typically abstract physical layer details (coding, modulation, radio channels, receiver algorithms, etc.) while physical layer ones do not consider overall network characteristics (topology, network traffic types, and so on). In particular, network simulators view a transmitted frame as an indivisible unit, which leads to several limitations. First, the impact of the vehicular radio channel is typically not reflected in its appropriate context. Further, interference due to frame collisions is not modeled accurately ( if at all) and, finally, the benefits of advanced signal processing techniques, such as interference cancellation, are difficult to assess. To overcome these shortcomings we have integrated a detailed physical layer simulator into the popular NS-3 network simulator. This approach aims to bridge the gap between the physical and network layer perspectives, allow for more accurate channel and physical layer models, and enable studies on cross-layer optimization. In this paper, we exemplify our approach by integrating an IEEE 802.11a and p physical layer simulator with NS-3. Further, we validate the augmented NS-3 simulator against an actual IEEE 802.11 wireless testbed and illustrate the additional value of this integration
Erysichthon Goes to Town: James Lasdunâs Modern American Re-telling of Ovid
The Erysichthon of Ovidâs Metamorphoses is given, in James Lasdunâs re-telling of the story, a repeat performance of chopping down a sacred tree, receiving the punishment of insatiable hunger, selling his daughter, and eating himself. Transgressive greed, impiety, and environmental destruction are elements appearing already amongst the Greek sources of this ancient myth, but Lasdun adds new weight to the environmental issues he brings out of the story, turning Erysichthon into a corrupt property developer. The modern American setting of âErisychthonâ lets the poemâs themes roam a long distance down the roads of selfimprovement, consumption, and future-centredness, which contrast with Greek ideas about moderation, and perfection being located in the past. These themes lead us to the eternally unfulfilled American Dream. Backing up our ideas with other sources from or about America, we discover how well the Erysichthon myth fits some of the prevailing approaches to living in America, which seem to have stemmed from the idea that making the journey there would lead to a better life. We encounter not only the relationship between Ovid and Lasdunâs versions of the story, but between the earth and its human inhabitants, and find that some attitudes can be traced back a long way
A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements
Sea-spray aerosols (SSA) are an important part of the climate system because
of their effects on the global radiative budget â both directly as scatterers and
absorbers of solar and terrestrial radiation, and indirectly as cloud
condensation nuclei (CCN) influencing cloud formation, lifetime, and
precipitation. In terms of their global mass, SSA have the largest
uncertainty of all aerosols. In this study we review 21 SSA source functions
from the literature, several of which are used in current climate models. In
addition, we propose a~new function. Even excluding outliers, the global annual
SSA mass produced spans roughly 3â70 Pg yr<sup>â1</sup> for the different
source functions, for particles with dry diameter <i>D</i><sub>p</sub> < 10 ÎŒm,
with relatively little interannual variability for a given
function. The FLEXPART Lagrangian particle dispersion model was run in
backward mode for a large global set of observed SSA concentrations,
comprised of several station networks and ship cruise measurement campaigns.
FLEXPART backward calculations produce gridded emission sensitivity fields,
which can subsequently be multiplied with gridded SSA production fluxes in order to
obtain modeled SSA concentrations. This allowed us to efficiently and simultaneously evaluate all
21 source functions against the measurements. Another
advantage of this method is that source-region information on wind speed and
sea surface temperatures (SSTs) could be stored and used for improving the
SSA source function parameterizations. The best source functions reproduced
as much as 70% of the observed SSA concentration variability at
several stations, which is comparable with "state of the art" aerosol
models. The main driver of SSA production is wind, and we found that the best
fit to the observation data could be obtained when the SSA production is
proportional to <i>U</i><sub>10</sub><sup>3.5</sup>, where
<i>U</i><sub>10</sub> is the source region averaged
10 m wind speed. A strong influence of SST on SSA production, with
higher temperatures leading to higher production, could be detected as well,
although the underlying physical mechanisms of the SST influence remains
unclear. Our new source function with wind speed and temperature dependence
gives a global SSA production for particles smaller than
<i>D</i><sub>p</sub> < 10 ÎŒm of 9 Pg yr<sup>â1</sup>, and is the best fit to the observed
concentrations
Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Ă lesund, Svalbard
© Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 LicenseIn this study we investigated the impact of water uptake by aerosol particles in ambient atmosphere on their optical properties and their direct radiative effect (ADRE, W m-2) in the Arctic at Ny-Ă
lesund, Svalbard, during 2008. To achieve this, we combined three models, a hygroscopic growth model, a Mie model and a radiative transfer model, with an extensive set of observational data. We found that the seasonal variation of dry aerosol scattering coefficients showed minimum values during the summer season and the beginning of fall (July-August-September), when small particles (< 100 nm in diameter) dominate the aerosol number size distribution. The maximum scattering by dry particles was observed during the Arctic haze period (March-April-May) when the average size of the particles was larger. Considering the hygroscopic growth of aerosol particles in the ambient atmosphere had a significant impact on the aerosol scattering coefficients: the aerosol scattering coefficients were enhanced by on average a factor of 4.30 ± 2.26 (mean ± standard deviation), with lower values during the haze period (March-April-May) as compared to summer and fall. Hygroscopic growth of aerosol particles was found to cause 1.6 to 3.7 times more negative ADRE at the surface, with the smallest effect during the haze period (March-April-May) and the highest during late summer and beginning of fall (July-August-September).Peer reviewe
- âŠ