139 research outputs found
A time-resolution study with a plastic scintillator read out by a Geiger-mode Avalanche Photodiode
In this work we attempt to establish the best time resolution attainable with
a scintillation counter consisting of a plastic scintillator read out by a
Geiger-mode Avalanche Photodiode. The measured time resolution is inversely
proportional to the square root of the energy deposited in the scintillator,
and scales to 18ps (sigma) at 1MeV. This result competes with the best ones
reported for photomultiplier tubes.Comment: 8 pages, 8 figure
The 10 Tesla muSR instrument: detector solutions
Solutions to the detector system of the High-Field muSR instrument at the
Paul Scherrer Institut (PSI) in Switzerland are presented. The strict technical
requirements are fulfilled through the application of Geiger-mode Avalanche
Photodiodes.Comment: 6 pages, 4 figure
The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for SR measurements on a continuous-wave beam
We report on the design and commissioning of a new spectrometer for muon-spin
relaxation/rotation studies installed at the Swiss Muon Source (SS) of the
Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially
a new design and replaces the old general-purpose surface-muon instrument (GPS)
which has been for long the workhorse of the SR user facility at PSI. By
making use of muon and positron detectors made of plastic scintillators read
out by silicon photomultipliers (SiPMs), a time resolution of the complete
instrument of about 160 ps (standard deviation) could be achieved. In addition,
the absence of light guides, which are needed in traditionally built SR
instrument to deliver the scintillation light to photomultiplier tubes located
outside magnetic fields applied, allowed us to design a compact instrument with
a detector set covering an increased solid angle compared to the old GPS.Comment: 11 pages, 11 figure
Evaluation of two thermal neutron detection units consisting of ZnS/LiF scintillating layers with embedded WLS fibers read out with a SiPM
Two single channel detection units for thermal neutron detection are
investigated in a neutron beam. They consist of two ZnS/LiF scintillating
layers sandwiching an array of WLS fibers. The pattern of this units can be
repeated laterally and vertically in order to build up a one dimensional
position sensitive multi-channel detector with the needed sensitive surface and
with the required neutron absorption probability. The originality of this work
arises from the fact that the WLS fibers are read out with SiPMs instead of the
traditionally used PMTs or MaPMTs. The signal processing system is based on a
photon counting approach. For SiPMs with a dark count rate as high as 0.7 MHz,
a trigger efficiency of 80% is achieved together with a system background rate
lower than Hz and a dead time of 30 s. No change of
performance is observed for neutron count rates of up to 3.6 kHz.Comment: Submitted to Nuclear Instruments and Methods
On the limited amplitude resolution of multipixel Geiger-mode APDs
The limited number of active pixels in a Geiger-mode Avalanche Photodiode
(G-APD) results not only in a non-linearity but also in an additional
fluctuation of its response. Both these effects are taken into account to
calculate the amplitude resolution of an ideal G-APD, which is shown to be
finite. As one of the consequences, the energy resolution of a scintillation
detector based on a G-APD is shown to be limited to some minimum value defined
by the number of pixels in the G-APD.Comment: 5 pages, 3 figure
- …