120 research outputs found

    Site-specific associations of muscle thickness with bone mineral density in middle-aged and older men and women

    Get PDF
    It is unknown whether age-related site-specific muscle loss is associated with areal bone mineral density (aBMD) in older adults. To examine the relationships between aBMD and whole-body muscle thickness distribution, 97 healthy adults (46 women and 51 men) aged 50–78 years volunteered. Total and appendicular lean soft tissue mass, aBMD of the lumbar spine (LS-aBMD) and femoral neck (FN-aBMD) were determined using dual-energy X-ray absorptiometry. Muscle thickness (MT) was measured by ultrasound at nine sites of the body (forearm, upper arm, trunk, upper leg, and lower leg). Relationships of each co-variate with aBMD were tested partialling out the effect of age. aBMD was not correlated with either MT of the trunk or anterior lower leg in either sex. In men, significant and relatively strong correlations were observed between anterior and posterior upper arms, posterior lower leg, and anterior upper leg MT and LS-aBMD or FN-aBMD. In women, significant correlations were observed between anterior and posterior upper legs, posterior lower leg, and anterior upper arm MT and FN-aBMD. LS-aBMD was only correlated with forearm and posterior upper leg MT in women. In conclusion, the site-specific association of MT and aBMD differs between sexes and may be associated with the participants’ daily physical activity profile

    Nitrate Respiration Protects Hypoxic Mycobacterium tuberculosis Against Acid- and Reactive Nitrogen Species Stresses

    Get PDF
    There are strong evidences that Mycobacterium tuberculosis survives in a non-replicating state in the absence of oxygen in closed lesions and granuloma in vivo. In addition, M. tuberculosis is acid-resistant, allowing mycobacteria to survive in acidic, inflamed lesions. The ability of M. tuberculosis to resist to acid was recently shown to contribute to the bacillus virulence although the mechanisms involved have yet to be deciphered. In this study, we report that M. tuberculosis resistance to acid is oxygen-dependent; whereas aerobic mycobacteria were resistant to a mild acid challenge (pH 5.5) as previously reported, we found microaerophilic and hypoxic mycobacteria to be more sensitive to acid. In hypoxic conditions, mild-acidity promoted the dissipation of the protonmotive force, rapid ATP depletion and cell death. Exogenous nitrate, the most effective alternate terminal electron acceptor after molecular oxygen, protected hypoxic mycobacteria from acid stress. Nitrate-mediated resistance to acidity was not observed for a respiratory nitrate reductase NarGH knock-out mutant strain. Furthermore, we found that nitrate respiration was equally important in protecting hypoxic non-replicating mycobacteria from radical nitrogen species toxicity. Overall, these data shed light on a new role for nitrate respiration in protecting M. tuberculosis from acidity and reactive nitrogen species, two environmental stresses likely encountered by the pathogen during the course of infection

    Heightened Vulnerability to MDR-TB Epidemics after Controlling Drug-Susceptible TB

    Get PDF
    Prior infection with one strain TB has been linked with diminished likelihood of re-infection by a new strain. This paper attempts to determine the role of declining prevalence of drug-susceptible TB in enabling future epidemics of MDR-TB.A computer simulation of MDR-TB epidemics was developed using an agent-based model platform programmed in NetLogo (See http://mdr.tbtools.org/). Eighty-one scenarios were created, varying levels of treatment quality, diagnostic accuracy, microbial fitness cost, and the degree of immunogenicity elicited by drug-susceptible TB. Outcome measures were the number of independent MDR-TB cases per trial and the proportion of trials resulting in MDR-TB epidemics for a 500 year period after drug therapy for TB is introduced.MDR-TB epidemics propagated more extensively after TB prevalence had fallen. At a case detection rate of 75%, improving therapeutic compliance from 50% to 75% can reduce the probability of an epidemic from 45% to 15%. Paradoxically, improving the case-detection rate from 50% to 75% when compliance with DOT is constant at 75% increases the probability of MDR-TB epidemics from 3% to 45%.The ability of MDR-TB to spread depends on the prevalence of drug-susceptible TB. Immunologic protection conferred by exposure to drug-susceptible TB can be a crucial factor that prevents MDR-TB epidemics when TB treatment is poor. Any single population that successfully reduces its burden of drug-susceptible TB will have reduced herd immunity to externally or internally introduced strains of MDR-TB and can experience heightened vulnerability to an epidemic. Since countries with good TB control may be more vulnerable, their self interest dictates greater promotion of case detection and DOTS implementation in countries with poor control to control their risk of MDR-TB

    High-Throughput Phenotypic Characterization of Pseudomonas aeruginosa Membrane Transport Genes

    Get PDF
    The deluge of data generated by genome sequencing has led to an increasing reliance on bioinformatic predictions, since the traditional experimental approach of characterizing gene function one at a time cannot possibly keep pace with the sequence-based discovery of novel genes. We have utilized Biolog phenotype MicroArrays to identify phenotypes of gene knockout mutants in the opportunistic pathogen and versatile soil bacterium Pseudomonas aeruginosa in a relatively high-throughput fashion. Seventy-eight P. aeruginosa mutants defective in predicted sugar and amino acid membrane transporter genes were screened and clear phenotypes were identified for 27 of these. In all cases, these phenotypes were confirmed by independent growth assays on minimal media. Using qRT-PCR, we demonstrate that the expression levels of 11 of these transporter genes were induced from 4- to 90-fold by their substrates identified via phenotype analysis. Overall, the experimental data showed the bioinformatic predictions to be largely correct in 22 out of 27 cases, and led to the identification of novel transporter genes and a potentially new histamine catabolic pathway. Thus, rapid phenotype identification assays are an invaluable tool for confirming and extending bioinformatic predictions

    Gender differences in disability after sickness absence with musculoskeletal disorders: five-year prospective study of 37,942 women and 26,307 men

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gender differences in the prevalence and occupational consequences of musculoskeletal disorders (MSDs) are consistently found in epidemiological studies. The study investigated whether gender differences also exist with respect to chronicity, measured as the rate of transition from sickness absence into permanent disability pension (DP).</p> <p>Methods</p> <p>Prospective national cohort study in Norway including all cases with a spell of sickness absence > eight weeks during 1997 certified with a MSD, 37,942 women and 26,307 men. The cohort was followed-up for five years with chronicity measured as granting of DP as the endpoint. The effect of gender was estimated in the full sample adjusting for sociodemographic factors and diagnostic distribution. Gender specific analyses were performed with the same explanatory variables. Finally, the gender difference was estimated for nine diagnostic subgroups.</p> <p>Results</p> <p>The crude rate of DP was 22% for women and 18% for men. After adjusting for all sociodemographic variables, a slightly higher female risk of DP remained. However, additional adjustment for diagnostic distribution removed the gender difference completely. Having children and working full time decreased the DP risk for both genders, whereas low socioeconomic status increased the risk similarly. There was a different age effect as more women obtained a DP below the age of 50. Increased female risk of chronicity remained for myalgia/fibromyalgia, back disorders and "other/unspecified" after relevant adjustments, whereas men with neck disorders were at higher risk of chronicity.</p> <p>Conclusions</p> <p>Women with MSDs had a moderately increased risk of chronicity compared to men, when including MSDs with a traumatic background. Possible explanations are lower income, a higher proportion belonging to diagnostic subgroups with poor prognosis, and a younger age of chronicity among women. When all sociodemographic and diagnostic variables were adjusted for, no gender difference remained, except for some diagnostic subgroups.</p

    The Neglected Intrinsic Resistome of Bacterial Pathogens

    Get PDF
    Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature
    corecore