16 research outputs found

    Biomarkers of vitamin B-12 status in NHANES: a roundtable summary123456

    Get PDF
    A roundtable to discuss the measurement of vitamin B-12 (cobalamin) status biomarkers in NHANES took place in July 2010. NHANES stopped measuring vitamin B-12–related biomarkers after 2006. The roundtable reviewed 3 biomarkers of vitamin B-12 status used in past NHANES—serum vitamin B-12, methylmalonic acid (MMA), and total homocysteine (tHcy)—and discussed the potential utility of measuring holotranscobalamin (holoTC) for future NHANES. The roundtable focused on public health considerations and the quality of the measurement procedures and reference methods and materials that past NHANES used or that are available for future NHANES. Roundtable members supported reinstating vitamin B-12 status measures in NHANES. They noted evolving concerns and uncertainties regarding whether subclinical (mild, asymptomatic) vitamin B-12 deficiency is a public health concern. They identified the need for evidence from clinical trials to address causal relations between subclinical vitamin B-12 deficiency and adverse health outcomes as well as appropriate cutoffs for interpreting vitamin B-12–related biomarkers. They agreed that problems with sensitivity and specificity of individual biomarkers underscore the need for including at least one biomarker of circulating vitamin B-12 (serum vitamin B-12 or holoTC) and one functional biomarker (MMA or tHcy) in NHANES. The inclusion of both serum vitamin B-12 and plasma MMA, which have been associated with cognitive dysfunction and anemia in NHANES and in other population-based studies, was preferable to provide continuity with past NHANES. Reliable measurement procedures are available, and National Institute of Standards and Technology reference materials are available or in development for serum vitamin B-12 and MMA

    Biomarkers of folate status in NHANES: a roundtable summary123456

    Get PDF
    A roundtable to discuss the measurement of folate status biomarkers in NHANES took place in July 2010. NHANES has measured serum folate since 1974 and red blood cell (RBC) folate since 1978 with the use of several different measurement procedures. Data on serum 5-methyltetrahydrofolate (5MTHF) and folic acid (FA) concentrations in persons aged ≥60 y are available in NHANES 1999–2002. The roundtable reviewed data that showed that folate concentrations from the Bio-Rad Quantaphase II procedure (Bio-Rad Laboratories, Hercules, CA; used in NHANES 1991–1994 and NHANES 1999–2006) were, on average, 29% lower for serum and 45% lower for RBC than were those from the microbiological assay (MA), which was used in NHANES 2007–2010. Roundtable experts agreed that these differences required a data adjustment for time-trend analyses. The roundtable reviewed the possible use of an isotope-dilution liquid chromatography–tandem mass spectrometry (LC-MS/MS) measurement procedure for future NHANES and agreed that the close agreement between the MA and LC-MS/MS results for serum folate supported conversion to the LC-MS/MS procedure. However, for RBC folate, the MA gave 25% higher concentrations than did the LC-MS/MS procedure. The roundtable agreed that the use of the LC-MS/MS procedure to measure RBC folate is premature at this time. The roundtable reviewed the reference materials available or under development at the National Institute of Standards and Technology and recognized the challenges related to, and the scientific need for, these materials. They noted the need for a commutability study for the available reference materials for serum 5MTHF and FA

    Mthfd1 Is an Essential Gene in Mice and Alters Biomarkers of Impaired One-carbon Metabolism*

    No full text
    Cytoplasmic folate-mediated one carbon (1C) metabolism functions to carry and activate single carbons for the de novo synthesis of purines, thymidylate, and for the remethylation of homocysteine to methionine. C1 tetrahydrofolate (THF) synthase, encoded by Mthfd1, is an entry point of 1Cs into folate metabolism through its formyl-THF synthetase (FTHFS) activity that catalyzes the ATP-dependent conversion of formate and THF to 10-formyl-THF. Disruption of FTHFS activity by the insertion of a gene trap vector into the Mthfd1 gene results in embryonic lethality in mice. Mthfd1gt/+ mice demonstrated lower hepatic adenosylmethionine levels, which is consistent with formate serving as a source of 1Cs for cellular methylation reactions. Surprisingly, Mthfd1gt/+ mice exhibited decreased levels of uracil in nuclear DNA, indicating enhanced de novo thymidylate synthesis, and suggesting that serine hydroxymethyltransferase and FTHFS compete for a limiting pool of unsubstituted THF. This study demonstrates the essentiality of the Mthfd1 gene and indicates that formate-derived 1Cs are utilized for de novo purine synthesis and the remethylation of homocysteine in liver. Further, the depletion of cytoplasmic FTHFS activity enhances thymidylate synthesis, affirming the competition between thymidylate synthesis and homocysteine remethylation for THF cofactors
    corecore