13 research outputs found
Salmonella effector SteE converts the mammalian serine/threonine kinase GSK3 into a tyrosine kinase to direct macrophage polarization.
Many Gram-negative bacterial pathogens antagonize anti-bacterial immunity through translocated effector proteins that inhibit pro-inflammatory signaling. In addition, the intracellular pathogen Salmonella enterica serovar Typhimurium initiates an anti-inflammatory transcriptional response in macrophages through its effector protein SteE. However, the target(s) and molecular mechanism of SteE remain unknown. Here, we demonstrate that SteE converts both the amino acid and substrate specificity of the host pleiotropic serine/threonine kinase GSK3. SteE itself is a substrate of GSK3, and phosphorylation of SteE is required for its activity. Remarkably, phosphorylated SteE then forces GSK3 to phosphorylate the non-canonical substrate signal transducer and activator of transcription 3 (STAT3) on tyrosine-705. This results in STAT3 activation, which along with GSK3 is required for SteE-mediated upregulation of the anti-inflammatory M2 macrophage marker interleukin-4Rα (IL-4Rα). Overall, the conversion of GSK3 to a tyrosine-directed kinase represents a tightly regulated event that enables a bacterial virulence protein to reprogram innate immune signaling and establish an anti-inflammatory environment
Pregnancy-related pelvic girdle pain: an update
A large number of scientists from a wide range of medical and surgical disciplines have reported on the existence and characteristics of the clinical syndrome of pelvic girdle pain during or after pregnancy. This syndrome refers to a musculoskeletal type of persistent pain localised at the anterior and/or posterior aspect of the pelvic ring. The pain may radiate across the hip joint and the thigh bones. The symptoms may begin either during the first trimester of pregnancy, at labour or even during the postpartum period. The physiological processes characterising this clinical entity remain obscure. In this review, the definition and epidemiology, as well as a proposed diagnostic algorithm and treatment options, are presented. Ongoing research is desirable to establish clear management strategies that are based on the pathophysiologic mechanisms responsible for the escalation of the syndrome's symptoms to a fraction of the population of pregnant women
The <i>Salmonella</i> Effector SteE Converts the Mammalian Serine/Threonine Kinase GSK3 into a Tyrosine Kinase
Many Gram-negative bacterial pathogens antagonize anti-bacterial immunity through translocated effector proteins that inhibit pro-inflammatory signaling. In addition, the intracellular pathogen Salmonella enterica serovar Typhimurium initiates an anti-inflammatory transcriptional response in macrophages through its effector protein SteE. However, the target(s) and molecular mechanism of SteE remain unknown. Here, we demonstrate that SteE converts both the amino acid and substrate specificity of the pleiotropic serine/threonine kinase GSK3. SteE itself is a substrate of GSK3 and phosphorylation of SteE is required for its activity. Remarkably, phosphorylated SteE then forces GSK3 to phosphorylate the non-canonical substrate STAT3 on tyrosine-705. This results in STAT3 activation and both GSK3 and STAT3 are required for SteE-mediated upregulation of the anti-inflammatory M2 macrophage marker IL-4Rα. Overall, the conversion of GSK3 to a tyrosine-directed kinase represents an unprecedented example of how a bacterial virulence protein reprograms innate immune signalling to establish an anti-inflammatory environment