756 research outputs found
Minimization via duality
We show how to use duality theory to construct minimized versions of a wide class of automata. We work out three cases in detail: (a variant of) ordinary automata, weighted automata and probabilistic automata. The basic idea is that instead of constructing a maximal quotient we go to the dual and look for a minimal subalgebra and then return to the original category. Duality ensures that the minimal subobject becomes the maximally quotiented object
Measure Recognition Problem
This is an article in mathematics, specifically in set theory. On the example
of the Measure Recognition Problem (MRP) the article highlights the phenomenon
of the utility of a multidisciplinary mathematical approach to a single
mathematical problem, in particular the value of a set-theoretic analysis. MRP
asks if for a given Boolean algebra \algB and a property of measures
one can recognize by purely combinatorial means if \algB supports a strictly
positive measure with property . The most famous instance of this problem
is MRP(countable additivity), and in the first part of the article we survey
the known results on this and some other problems. We show how these results
naturally lead to asking about two other specific instances of the problem MRP,
namely MRP(nonatomic) and MRP(separable). Then we show how our recent work D\v
zamonja and Plebanek (2006) gives an easy solution to the former of these
problems, and gives some partial information about the latter. The long term
goal of this line of research is to obtain a structure theory of Boolean
algebras that support a finitely additive strictly positive measure, along the
lines of Maharam theorem which gives such a structure theorem for measure
algebras
Control strategies for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: Utility for exercise testing and mobile cycling
AIM: The aim of this study was to investigate feedback
control strategies for integration of electric motor assist and functional electrical stimulation (FES) for paraplegic cycling, with particular focus on development of a testbed for exercise testing in FES cycling, in which both cycling cadence and workrate are simultaneously well controlled and contemporary physiological measures of exercise performance derived. A second aim was
to investigate the possible benefits of the approach for mobile, recreational cycling.
METHODS: A recumbent tricycle with an auxiliary electric motor is used, which is adapted for paraplegic users, and instrumented for stimulation control. We propose a novel integrated control strategy which simultaneously provides feedback control of leg power output (via automatic adjustment of stimulation intensity) and cycling cadence (via electric motor control). Both loops are
designed using system identification and analytical (model-based) feedback design methods. Ventilatory and pulmonary gas exchange response profiles are derived using a portable system for real-time breath-by-breath acquisition.
RESULTS:We provide indicative results from one paraplegic subject in which a series of feedback-control tests illustrate accurate control of cycling cadence, leg power control, and external disturbance rejection. We also provide physiological response profiles from a submaximal exercise step test and a maximal incremental exercise test, as facilitated by the control strategy.
CONCLUSION: The integrated control strategy is effective in facilitating
exercise testing under conditions of well-controlled cadence
and power output. Our control approach significantly extends the
achievable workrate range and enhances exercise-test sensitivity
for FES cycling, thus allowing a more stringent characterization
of physiological response profiles and estimation of key parameters
of aerobic function.We further conclude that the control approach
can significantly improve the overall performance of mobile recreational
cycling
Noise and Measurement Efficiency of a Partially Coherent Mesoscopic Detector
We study the noise properties and efficiency of a mesoscopic resonant-level
conductor which is used as a quantum detector, in the regime where transport
through the level is only partially phase coherent. We contrast models in which
detector incoherence arises from escape to a voltage probe, versus those in
which it arises from a random time-dependent potential. Particular attention is
paid to the back-action charge noise of the system. While the average detector
current is similar in all models, we find that its noise properties and
measurement efficiency are sensitive both to the degree of coherence and to the
nature of the dephasing source. Detector incoherence prevents quantum limited
detection, except in the non-generic case where the source of dephasing is not
associated with extra unobserved information. This latter case can be realized
in a version of the voltage probe model.Comment: 15 pages, 5 figures; revised dicussion of voltage probe model
Comparison of stimulation patterns for FES-cycling using measures of oxygen cost and stimulation cost
<b>Aim</b><p></p>
The energy efficiency of FES-cycling in spinal cord injured subjects is very much lower than that of normal cycling, and efficiency is dependent upon the parameters of muscle stimulation. We investigated measures which can be used to evaluate the effect on cycling performance of changes in stimulation parameters, and which might therefore be used to optimise them. We aimed to determine whether oxygen cost and stimulation cost measurements are sensitive enough to allow discrimination between the efficacy of different activation ranges for stimulation of each muscle group during constant-power cycling. <p></p>
<b>Methods</b><p></p>
We employed a custom FES-cycling ergometer system, with accurate control of cadence and stimulated exercise workrate. Two sets of muscle activation angles (“stimulation patterns”), denoted “P1” and “P2”, were applied repeatedly (eight times each) during constant-power cycling, in a repeated measures design with a single paraplegic subject. Pulmonary oxygen uptake was measured in real time and used to determine the oxygen cost of the exercise. A new measure of stimulation cost of the exercise is proposed, which represents the total rate of stimulation charge applied to the stimulated muscle groups during cycling. A number of energy-efficiency measures were also estimated. <p></p>
<b>Results</b><p></p>
Average oxygen cost and stimulation cost of P1 were found to be significantly lower than those for P2 (paired <i>t</i>-test, <i>p</i> < 0.05): oxygen costs were 0.56 ± 0.03 l min<sup>−1</sup> and 0.61 ± 0.04 l min<sup>−1</sup>(mean ± S.D.), respectively; stimulation costs were 74.91 ± 12.15 mC min<sup>−1</sup> and 100.30 ± 14.78 mC min<sup>−1</sup> (mean ± S.D.), respectively. Correspondingly, all efficiency estimates for P1 were greater than those for P2. <p></p>
<b>Conclusion</b><p></p>
Oxygen cost and stimulation cost measures both allow discrimination between the efficacy of different muscle activation patterns during constant-power FES-cycling. However, stimulation cost is more easily determined in real time, and responds more rapidly and with greatly improved signal-to-noise properties than the ventilatory oxygen uptake measurements required for estimation of oxygen cost. These measures may find utility in the adjustment of stimulation patterns for achievement of optimal cycling performance. <p></p>
Quantum-Limited Measurement and Information in Mesoscopic Detectors
We formulate general conditions necessary for a linear-response detector to
reach the quantum limit of measurement efficiency, where the
measurement-induced dephasing rate takes on its minimum possible value. These
conditions are applicable to both non-interacting and interacting systems. We
assess the status of these requirements in an arbitrary non-interacting
scattering based detector, identifying the symmetries of the scattering matrix
needed to reach the quantum limit. We show that these conditions are necessary
to prevent the existence of information in the detector which is not extracted
in the measurement process.Comment: 13 pages, 1 figur
Impacts of Climate Change on indirect human exposure to pathogens and chemicals from agriculture
Objective: Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts.
Data sources: In this review, we used expert input and considered literature on climate change ; health effects resulting from exposure to pathogens and chemicals arising from agriculture ; inputs of chemicals and pathogens to agricultural systems ; and human exposure pathways for pathogens and chemicals in agricultural systems.
Data synthesis: We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment ; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems ; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks.
Conclusions: Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes
Relating the Lorentzian and exponential: Fermi's approximation,the Fourier transform and causality
The Fourier transform is often used to connect the Lorentzian energy
distribution for resonance scattering to the exponential time dependence for
decaying states. However, to apply the Fourier transform, one has to bend the
rules of standard quantum mechanics; the Lorentzian energy distribution must be
extended to the full real axis instead of being bounded from
below (``Fermi's approximation''). Then the Fourier transform
of the extended Lorentzian becomes the exponential, but only for times , a time asymmetry which is in conflict with the unitary group time evolution
of standard quantum mechanics. Extending the Fourier transform from
distributions to generalized vectors, we are led to Gamow kets, which possess a
Lorentzian energy distribution with and have exponential
time evolution for only. This leads to probability predictions
that do not violate causality.Comment: 23 pages, no figures, accepted by Phys. Rev.
Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems
An approach to experimentally exploring electronic correlation functions in
mesoscopic regimes is proposed. The idea is to monitor the mesoscopic
fluctuations of a tunneling current flowing between the two layers of a
semiconductor double-quantum-well structure. From the dependence of these
fluctuations on external parameters, such as in-plane or perpendicular magnetic
fields, external bias voltages, etc., the temporal and spatial dependence of
various prominent correlation functions of mesoscopic physics can be
determined. Due to the absence of spatially localized external probes, the
method provides a way to explore the interplay of interaction and localization
effects in two-dimensional systems within a relatively unperturbed environment.
We describe the theoretical background of the approach and quantitatively
discuss the behavior of the current fluctuations in diffusive and ergodic
regimes. The influence of both various interaction mechanisms and localization
effects on the current is discussed. Finally a proposal is made on how, at
least in principle, the method may be used to experimentally determine the
relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include
Heliospheric Transport of Neutron-Decay Protons
We report on new simulations of the transport of energetic protons
originating from the decay of energetic neutrons produced in solar flares.
Because the neutrons are fast-moving but insensitive to the solar wind magnetic
field, the decay protons are produced over a wide region of space, and they
should be detectable by current instruments over a broad range of longitudes
for many hours after a sufficiently large gamma-ray flare. Spacecraft closer to
the Sun are expected to see orders-of magnitude higher intensities than those
at the Earth-Sun distance. The current solar cycle should present an excellent
opportunity to observe neutron-decay protons with multiple spacecraft over
different heliographic longitudes and distances from the Sun.Comment: 12 pages, 4 figures, to be published in special issue of Solar
Physic
- …