305 research outputs found

    Modular Groups, Visibility Diagram and Quantum Hall Effect

    Full text link
    We consider the action of the modular group Γ(2)\Gamma (2) on the set of positive rational fractions. From this, we derive a model for a classification of fractional (as well as integer) Hall states which can be visualized on two ``visibility" diagrams, the first one being associated with even denominator fractions whereas the second one is linked to odd denominator fractions. We use this model to predict, among some interesting physical quantities, the relative ratios of the width of the different transversal resistivity plateaus. A numerical simulation of the tranversal resistivity plot based on this last prediction fits well with the present experimental data.Comment: 17 pages, plain TeX, 4 eps figures included (macro epsf.tex), 1 figure available from reques

    Empirical relation between angular momentum transport and thermal-to-magnetic pressure ratio in shearing box simulations

    Full text link
    By combining data from different published 3-D simulations of Keplerian shearing boxes unstable to the magnetorotational instability (MRI), we highlight tight anti-correlations between the total effective inferred angular momentum transport parameter, αtot\alpha_{tot}, its separate Maxwell and Reynolds contributions αmag\alpha_{mag} and αkin\alpha_{kin}, and the kinetic to magnetic pressure ratio β\beta, defined with the initial or saturated (when available) thermal pressure. Plots of Log(αkin),Log(αmag)Log (\alpha_{kin}), Log (\alpha_{mag}), and Log(αtot)Log (\alpha_{tot}) vs Log(β)Log (\beta) are well fit by straight lines even as αkin\alpha_{kin}, αmag\alpha_{mag},and αtot\alpha_{tot} vary by four orders of magnitude over the simulations included. The ratio αkin/αmag\alpha_{kin}/\alpha_{mag} and the product αtotβ\alpha_{tot}\beta are quite constant and largely independent of the presence or absence of weak mean fields, the choice of initial and boundary conditions, and the resolution. In short, simulations have more strongly constrained the product αtotβ\alpha_{tot}\beta than αtot\alpha_{tot} itself.Comment: 22 pages (includes 10 tables and 3 figs.), accepted by New Astronom

    Particle Acceleration in Cosmic Sites - Astrophysics Issues in our Understanding of Cosmic Rays

    Full text link
    Laboratory experiments to explore plasma conditions and stimulated particle acceleration can illuminate aspects of the cosmic particle acceleration process. Here we discuss the cosmic-ray candidate source object variety, and what has been learned about their particle-acceleration characteristics. We identify open issues as discussed among astrophysicists. -- The cosmic ray differential intensity spectrum is a rather smooth power-law spectrum, with two kinks at the "knee" (~10^15 eV) and at the "ankle" (~3 10^18 eV). It is unclear if these kinks are related to boundaries between different dominating sources, or rather related to characteristics of cosmic-ray propagation. We believe that Galactic sources dominate up to 10^17 eV or even above, and the extragalactic origin of cosmic rays at highest energies merges rather smoothly with Galactic contributions throughout the 10^15--10^18 eV range. Pulsars and supernova remnants are among the prime candidates for Galactic cosmic-ray production, while nuclei of active galaxies are considered best candidates to produce ultrahigh-energy cosmic rays of extragalactic origin. Acceleration processes are related to shocks from violent ejections of matter from energetic sources such as supernova explosions or matter accretion onto black holes. Details of such acceleration are difficult, as relativistic particles modify the structure of the shock, and simple approximations or perturbation calculations are unsatisfactory. This is where laboratory plasma experiments are expected to contribute, to enlighten the non-linear processes which occur under such conditions.Comment: accepted for publication in EPJD, topical issue on Fundamental physics and ultra-high laser fields. From review talk at "Extreme Light Infrastructure" workshop, Sep 2008. Version-2 May 2009: adjust some wordings and references at EPJD proofs stag

    Chiral bosonization for non-commutative fields

    Full text link
    A model of chiral bosons on a non-commutative field space is constructed and new generalized bosonization (fermionization) rules for these fields are given. The conformal structure of the theory is characterized by a level of the Kac-Moody algebra equal to (1+θ2)(1+ \theta^2) where θ\theta is the non-commutativity parameter and chiral bosons living in a non-commutative fields space are described by a rational conformal field theory with the central charge of the Virasoro algebra equal to 1. The non-commutative chiral bosons are shown to correspond to a free fermion moving with a speed equal to c=c1+θ2 c^{\prime} = c \sqrt{1+\theta^2} where cc is the speed of light. Lorentz invariance remains intact if cc is rescaled by ccc \to c^{\prime}. The dispersion relation for bosons and fermions, in this case, is given by ω=ck\omega = c^{\prime} | k|.Comment: 16 pages, JHEP style, version published in JHE

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events

    Get PDF
    We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging

    Get PDF
    We present a measurement of the top quark pair (ttˉt\bar{t}) production cross section (σttˉ\sigma_{t\bar{t}}) in ppˉp\bar{p} collisions at s=1.96\sqrt{s}=1.96 TeV using 230 pb1^{-1} of data collected by the D0 experiment at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), missing transverse energy, and jets in the final state. We employ lifetime-based b-jet identification techniques to further enhance the ttˉt\bar{t} purity of the selected sample. For a top quark mass of 175 GeV, we measure σttˉ=8.61.5+1.6(stat.+syst.)±0.6(lumi.)\sigma_{t\bar{t}}=8.6^{+1.6}_{-1.5}(stat.+syst.)\pm 0.6(lumi.) pb, in agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let

    Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV

    Get PDF
    The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.

    Prior dengue virus exposure shapes T Cell immunity to Zika Virus in humans

    Get PDF
    While progress has been made in characterizing humoral immunity to Zika virus (ZIKV) in humans, little is known regarding the corresponding T cell responses to ZIKV. Here we investigate the kinetics and viral epitopes targeted by T cells responding to ZIKV and address the critical question of whether pre-existing dengue virus (DENV) T cell immunity modulates these responses. We find that memory T cell responses elicited by prior infection with DENV or vaccination with Tetravalent Dengue Attenuated Vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-reactivity is explained by the sequence similarity of the two viruses, as the ZIKV peptides recognized by DENV-elicited memory T cells are identical or highly conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute phase of infection are detected earlier and in greater magnitude in DENV-immune patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the convalescent phase in DENV-naive donors, but declines in DENV pre-exposed donors, compatible with more efficient control of ZIKV replication and/or clearance of ZIKV antigen. The quality of responses is also influenced by previous DENV exposure, and ZIKV-specific CD8 T cells form DENV pre-exposed donors selectively up-regulated granzyme B and PD1, as compared to DENV-naïve donors. Finally, we discovered that ZIKV structural proteins (E, prM and C) are major targets of both the CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in nonstructural proteins
    corecore