3,776 research outputs found

    An Infrastructure for acquiring high quality semantic metadata

    Get PDF
    Because metadata that underlies semantic web applications is gathered from distributed and heterogeneous data sources, it is important to ensure its quality (i.e., reduce duplicates, spelling errors, ambiguities). However, current infrastructures that acquire and integrate semantic data have only marginally addressed the issue of metadata quality. In this paper we present our metadata acquisition infrastructure, ASDI, which pays special attention to ensuring that high quality metadata is derived. Central to the architecture of ASDI is a erification engine that relies on several semantic web tools to check the quality of the derived data. We tested our prototype in the context of building a semantic web portal for our lab, KMi. An experimental evaluation omparing the automatically extracted data against manual annotations indicates that the verification engine enhances the quality of the extracted semantic metadata

    Bounds on Block Error Probability for Multilevel Concatenated Codes

    Get PDF
    Maximum likelihood decoding of long block codes is not feasable due to large complexity. Some classes of codes are shown to be decomposable into multilevel concatenated codes (MLCC). For these codes, multistage decoding provides good trade-off between performance and complexity. In this paper, we derive an upper bound on the probability of block error for MLCC. We use this bound to evaluate difference in performance for different decompositions of some codes. Examples given show that a significant reduction in complexity can be achieved when increasing number of stages of decoding. Resulting performance degradation varies for different decompositions. A guideline is given for finding good m-level decompositions

    Multiple-Resampling Receiver Design for OFDM Over Doppler-Distorted Underwater Acoustic Channels

    Get PDF
    Cataloged from PDF version of article.In this paper, we focus on orthogonal frequency-divisionmultiplexing (OFDM) receiver designs for underwater acoustic (UWA) channels with user- and/or path-specific Doppler scaling distortions. The scenario is motivated by the cooperative communications framework, where distributed transmitter/receiver pairs may experience significantly different Doppler distortions, as well as by the single-user scenarios, where distinct Doppler scaling factors may exist among different propagation paths. The conventional approach of front–end resampling that corrects for common Doppler scalingmay not be appropriatein such scenarios, rendering a post-fast-Fourier-transform (FFT) signal that is contaminated by user- and/or path-specific intercarrier interference. To counteract this problem, we propose a family of front–end receiver structures thatutilizemultiple-resampling (MR)branches,eachmatched to the Doppler scaling factor of a particular user and/or path. Following resampling, FFT modules transform the Doppler-compensated signals into the frequency domain for further processing through linear or nonlinear detection schemes. As part of the overall receiver structure, a gradient–descent approachis also proposed to refine the channel estimates obtained by standard sparse channel estimators. The effectiveness and robustness of the proposed receivers are demonstrated via simulations, as well as emulations based on real data collected during the 2010 Mobile Acoustic Communications Experiment (MACE10, Martha’s Vineyard, MA) and the 2008 Kauai Acomms MURI (KAM08, Kauai, HI) experiment

    Adaptive OFDM Modulation for Underwater Acoustic Communications: Design Considerations and Experimental Results

    Get PDF
    Cataloged from PDF version of article.In this paper, we explore design aspects of adaptive modulation based on orthogonal frequency-division multiplexing (OFDM) for underwater acoustic (UWA) communications, and study its performance using real-time at-sea experiments. Our design criterion is to maximize the system throughput under a target average bit error rate (BER). We consider two different schemes based on the level of adaptivity: in the first scheme, only the modulation levels are adjusted while the power is allocated uniformly across the subcarriers, whereas in the second scheme, both the modulation levels and the power are adjusted adaptively. For both schemes we linearly predict the channel one travel time ahead so as to improve the performance in the presence of a long propagation delay. The system design assumes a feedback link from the receiver that is exploited in two forms: one that conveys the modulation alphabet and quantized power levels to be used for each subcarrier, and the other that conveys a quantized estimate of the sparse channel impulse response. The second approach is shown to be advantageous, as it requires significantly fewer feedback bits for the same system throughput. The effectiveness of the proposed adaptive schemes is demonstrated using computer simulations, real channel measurements recorded in shallow water off the western coast of Kauai, HI, USA, in June 2008, and real-time at-sea experiments conducted at the same location in July 2011. We note that this is the first paper that presents adaptive modulation results for UWA links with real-time at-sea experiments. © 2013 IEEE

    Phenolic Profile and Antioxidant Activity of Pulp and Peel from Peach and Nectarine Fruits

    Get PDF
    Peach (Prunus persica L.) is a fruit of high nutritional and economic value. Carbohydrates, dietary fibers, minerals and organic acids are among the major constituents of peach fruit, which contribute to the nutritional quality of both fresh fruits and juice. Polyphenolic compounds found in peach may play an important role in physiological functions related to human health. Different polyphenolics may have varied biological activities including antioxidant activity. In this study antioxidant characteristics between peel and pulp of different peach cultivars (‘RadmilovÄanka’, ‘June Gold’, ‘Blake’, ‘Hale’, ‘Vesna’, ‘Adria’) and one of nectarine (‘Fantasia’) were investigated. The peel and pulp extracts showed a huge amount of total phenolics (TP), total flavonoids (TF), total hydroxycinnamates (TH) and total flavonols (TFL), ranging from 42.7-211.4, 11.1-128.5 mg GAE/100 g fresh weight (f.w.) (TP), 21.9 -94.9, 5.0-58.9 mg CE/100 g f.w. (TF), 28.4-389.2, 8.5-165.8 mg kg-1 f.w. (TH) and 17.3-54 mg kg-1 f.w. (TFL). High contents of phenolic compounds were significantly correlated with high antioxidant capacities. Peach pulp and peel differ significantly in their phenolic profiles: the pulp contains mainly chlorogenic, neochlorogenic and p-coumaric acids, whereas the peel possesses chlorogenic, neochlorogenic and p-coumaric acids together with several flavonol glycosides in huge amounts. Our results indicate that cultivar and extraction solvent play important roles in phenolic compositions and antioxidant properties of peach and nectarine extracts, which was shown using statistical analysis (ANOVA). There are high correlations between extracted phenolic compounds and peach and nectarine cultivars, and used solvent and part of the fruit (peel and pulp)

    Biosorptive removal of Pb2+, Cd2+ and Zn2+ ions from water by agenaria vulgaris shell

    Get PDF
    Lagenaria vulgaris (LV) shell was used as a biosorbent for the removal of heavy metal ions, Pb2+, Cd2+ and Zn2+, from aqueous solutions. Experiments were carried out under batch conditions. The effects of contact time, initial pH, temperature and stirring speed on removal efficiency are presented. Sorption of the investigated metals was fast, reaching equilibrium after about 5 to 10 min, depending on the metal. Biosorption was highly pH-dependent, and the optimal pH for investigated metals was in the range of 4.5 to 6.0. The effects of temperature demonstrated that biosorption of the metals is a chemical process. SEM analysis revealed interesting morphological changes after acid refinement of the raw biosorbent and metal uptake that is related to the chemical nature of the biosorption process. EDX analysis of Lagenaria vulgaris biosorbent(LVB) before and after metal sorption revealed that the ion exchange mechanism was the principal sorption process. Fourier transform infrared spectroscopy (FTIR) analysis has shown that major functional groups (carboxyl and hydroxyl) on the biosorbent surface took part in the metal ion uptake process as active sites. The results obtained showed that Lagenaria vulgaris based biosorbent could be used as an effective and low-cost pre-treatment step for removal of toxic metals from wastewaters

    L-Arginine Intake Effect on Adenine Nucleotide Metabolism in Rat Parenchymal and Reproductive Tissues

    Get PDF
    L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5′-nucleotidase (5′-NU), adenosine deaminase (ADA), AMP deaminase, and xanthine oxidase (XO), during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme, 5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake

    Arrival time and intensity binning at unprecedented repetition rates

    Get PDF
    Understanding dynamics on ultrafast timescales enables unique and new insights into important processes in the materials and life sciences. In this respect, the fundamental pump-probe approach based on ultra-short photon pulses aims at the creation of stroboscopic movies. Performing such experiments at one of the many recently established accelerator-based 4th-generation light sources such as free-electron lasers or superradiant THz sources allows an enormous widening of the accessible parameter space for the excitation and/or probing light pulses. Compared to table-top devices, critical issues of this type of experiment are fluctuations of the timing between the accelerator and external laser systems and intensity instabilities of the accelerator-based photon sources. Existing solutions have so far been only demonstrated at low repetition rates and/or achieved a limited dynamic range in comparison to table-top experiments, while the 4th generation of accelerator-based light sources is based on superconducting radio-frequency technology, which enables operation at MHz or even GHz repetition rates. In this article, we present the successful demonstration of ultra-fast accelerator-laser pump-probe experiments performed at an unprecedentedly high repetition rate in the few- hundred-kHz regime and with a currently achievable optimal time resolution of 13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple beam parameters relevant for the experiment, allows us to achieve an excellent sensitivity in real-world ultra-fast experiments, as demonstrated for the example of THz-field-driven coherent spin precession

    Improved Diagnosis and Management of Paediatric Renal Transplant Recipients Using the Banff 2013 Histopathological Classification

    Get PDF
    Introduction: Since the publication of the 2013 Banff classification, adult studies have shown evidence of improved prognosis using the new histopathological criteria. Our study assesses for the first time the impact of the new classification on the diagnosis of acute antibody-mediated rejection (AMR) in paediatric renal transplant recipients (pRTR). / Methods: This single-centre study is a retrospective evaluation of 56 paediatric post-transplant de novo DSA-positive patients who had a percutaneous renal transplant biopsy due to renal allograft dysfunction from January 2006 to March 2012. Their biopsies were re-scored by a solitary specialist trained in 2013 Banff classification. The results were compared with previous classification as per 2003/2007 Banff criteria with results presented as range (median). / Results: At the time of biopsy, pRTR were aged 1.6 - 17.5 (median 14.9) years old with 412 - 2735 mean fluorescence intensity (MFI; maximal at 713 - 31,625; median 3466 and 4809). Following the 2013 Banff classification, there was a total of 5 cases of acute AMR compared to one confirmed and one suspicious AMR with the 2003/2007 Banff classification (with no change in the remaining 51 patients’ classification). Consequently, 5.3% (3 of 56) patients would have been diagnosed with T-cell mediated rejection with suboptimal treatment. There was an overall 70% (48 - 112%) decrease in the renal allograft function in the 6 months follow-up period after aggressive treatment for acute AMR and 2 of 3 patients had further rejection episodes in the following year. / Conclusion: This research supports the new Banff 2013 classification as a more precise classification in pRTR in the diagnosis of AMR with 5% of patients being correctly diagnosed and managed with improvement in renal allograft function
    corecore