9 research outputs found

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    Get PDF
    : The identification of high-risk patients in the early stages of infected pancreatic necrosis (IPN) is critical, because it could help the clinicians to adopt more effective management strategies. We conducted a post hoc analysis of the MANCTRA-1 international study to assess the association between clinical risk factors and mortality among adult patients with IPN. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality. We identified 247 consecutive patients with IPN hospitalised between January 2019 and December 2020. History of uncontrolled arterial hypertension (p = 0.032; 95% CI 1.135-15.882; aOR 4.245), qSOFA (p = 0.005; 95% CI 1.359-5.879; aOR 2.828), renal failure (p = 0.022; 95% CI 1.138-5.442; aOR 2.489), and haemodynamic failure (p = 0.018; 95% CI 1.184-5.978; aOR 2.661), were identified as independent predictors of mortality in IPN patients. Cholangitis (p = 0.003; 95% CI 1.598-9.930; aOR 3.983), abdominal compartment syndrome (p = 0.032; 95% CI 1.090-6.967; aOR 2.735), and gastrointestinal/intra-abdominal bleeding (p = 0.009; 95% CI 1.286-5.712; aOR 2.710) were independently associated with the risk of mortality. Upfront open surgical necrosectomy was strongly associated with the risk of mortality (p < 0.001; 95% CI 1.912-7.442; aOR 3.772), whereas endoscopic drainage of pancreatic necrosis (p = 0.018; 95% CI 0.138-0.834; aOR 0.339) and enteral nutrition (p = 0.003; 95% CI 0.143-0.716; aOR 0.320) were found as protective factors. Organ failure, acute cholangitis, and upfront open surgical necrosectomy were the most significant predictors of mortality. Our study confirmed that, even in a subgroup of particularly ill patients such as those with IPN, upfront open surgery should be avoided as much as possible. Study protocol registered in ClinicalTrials.Gov (I.D. Number NCT04747990)

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Research and Science Today Supplement 2/2014

    No full text

    Proceedings of The 8th Romanian National HIV/AIDS Congress and The 3rd Central European HIV Forum

    No full text

    ABSTRACTS

    No full text

    Timing of Cholecystectomy After Moderate and Severe Acute Biliary Pancreatitis

    No full text
    IMPORTANCE Considering the lack of equipoise regarding the timing of cholecystectomy in patients with moderately severe and severe acute biliary pancreatitis (ABP), it is critical to assess this issue.OBJECTIVE To assess the outcomes of early cholecystectomy (EC) in patients with moderately severe and severe ABP.DESIGN, SETTINGS, AND PARTICIPANTS This cohort study retrospectively analyzed real-life data from the MANCTRA-1 (Compliance With Evidence-Based Clinical Guidelines in the Management of Acute Biliary Pancreatitis) data set, assessing 5304 consecutive patients hospitalized between January 1, 2019, and December 31, 2020, for ABP from 42 countries. A total of 3696 patients who were hospitalized for ABP and underwent cholecystectomy were included in the analysis; of these, 1202 underwent EC, defined as a cholecystectomy performed within 14 days of admission. Univariable and multivariable logistic regression models were used to identify prognostic factors of mortality and morbidity. Data analysis was performed from January to February 2023.MAIN OUTCOMES Mortality and morbidity after EC.RESULTS Of the 3696 patients (mean [SD] age, 58.5 [17.8] years; 1907 [51.5%] female) included in the analysis, 1202 (32.5%) underwent EC and 2494 (67.5%) underwent delayed cholecystectomy (DC). Overall, EC presented an increased risk of postoperative mortality (1.4% vs 0.1%, P <.001) and morbidity (7.7% vs 3.7%, P < .001) compared with DC. On the multivariable analysis, moderately severe and severe ABP were associated with increased mortality (odds ratio [OR], 361.46; 95% CI, 2.28-57 212.31; P = .02) and morbidity (OR, 2.64; 95% CI, 1.35-5.19; P = .005). In patients with moderately severe and severe ABP (n = 108), EC was associated with an increased risk of mortality (16 [15.6%] vs 0 [0%], P < .001), morbidity (30 [30.3%] vs 57 [5.5%], P < .001), bile leakage (2 [2.4%] vs 4 [0.4%], P = .02), and infections (12 [14.6%] vs 4 [0.4%], P < .001) compared with patients with mild ABP who underwent EC. In patients with moderately severe and severe ABP (n = 108), EC was associated with higher mortality (16 [15.6%] vs 2 [1.2%], P < .001), morbidity (30 [30.3%] vs 17 [10.3%], P < .001), and infections (12 [14.6%] vs 2 [1.3%], P < .001) compared with patients with moderately severe and severe ABP who underwent DC. On the multivariable analysis, the patient's age (OR, 1.12; 95% CI, 1.02-1.36; P = .03) and American Society of Anesthesiologists score (OR, 5.91; 95% CI, 1.06-32.78; P = .04) were associated with mortality; severe complications of ABP were associated with increased mortality (OR, 50.04; 95% CI, 2.37-1058.01; P = .01) and morbidity (OR, 33.64; 95% CI, 3.19-354.73; P = .003).CONCLUSIONS AND RELEVANCE This cohort study's findings suggest that EC should be considered carefully in patients with moderately severe and severe ABP, as it was associated with increased postoperative mortality and morbidity. However, older and more fragile patients manifesting severe complications related to ABP should most likely not be considered for EC

    Infected pancreatic necrosis: outcomes and clinical predictors of mortality. A post hoc analysis of the MANCTRA-1 international study

    No full text
    corecore