8 research outputs found

    Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine

    Get PDF
    Aims: Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results: Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions: Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases

    R Is for Arginine

    No full text

    Developmental HCN channelopathy results in decreased neural progenitor proliferation and microcephaly in mice.

    No full text
    The development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and -intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a role for HCN channel subunits as a part of a general mechanism influencing cortical development in mammals

    Homoarginine Levels are Regulated by L-Arginine:Glycine Amidinotransferase and Affect Stroke Outcome: Results from Human and Murine Studies

    No full text
    Item does not contain fulltextEndogenous arginine homologues, including homoarginine, have been identified as novel biomarkers for cardiovascular disease and outcomes. Our studies of human cohorts and a confirmatory murine model associated the arginine homologue homoarginine and its metabolism in stroke pathology and outcome.Increasing homoarginine levels independently associated with a reduction in all-cause mortality in patients with ischemic stroke (7.4 years follow-up, HR for 1 SD homoarginine: 0.79 [95\% CI:0.64,0.96], P=0.019, n=389). Homoarginine was also independently associated with the NIHSS+age score and 30-day mortality after ischemic stroke. (P<0.05, n=137). Genome-wide association study (GWAS) revealed that plasma homoarginine strongly associated with SNPs in the L-arginine:glycine amidinotransferase (AGAT) gene (P<2.1x10(-8), n=2,806) and increased AGAT expression in a cell model was associated with increased homoarginine. Next, we employed two genetic murine models to investigate the link between plasma homoarginine and outcome after experimental ischemic stroke: i) an AGAT deletion (AGAT(-/-)) and ii) a guanidinoacetate N-methyltransferase deletion, (GAMT(-/-)) causing AGAT upregulation. As suggested by the GWAS, homoarginine was absent in AGAT(-/-), and increased in GAMT(-/-) mice. Cerebral damage and neurological deficits in experimental stroke were increased in AGAT(-/-) mice and attenuated by homoarginine supplementation, whereas infarct size in GAMT(-/-) mice was decreased compared with controls.Low homoarginine appears related to poor outcome after ischemic stroke. Further validation in future trials may lead to therapeutic adjustments of homoarginine metabolism that alleviate stroke and other vascular disorders
    corecore