360 research outputs found
Limited Visibility and Uncertainty Aware Motion Planning for Automated Driving
Adverse weather conditions and occlusions in urban environments result in
impaired perception. The uncertainties are handled in different modules of an
automated vehicle, ranging from sensor level over situation prediction until
motion planning. This paper focuses on motion planning given an uncertain
environment model with occlusions. We present a method to remain collision free
for the worst-case evolution of the given scene. We define criteria that
measure the available margins to a collision while considering visibility and
interactions, and consequently integrate conditions that apply these criteria
into an optimization-based motion planner. We show the generality of our method
by validating it in several distinct urban scenarios
Pedestrian Prediction by Planning using Deep Neural Networks
Accurate traffic participant prediction is the prerequisite for collision
avoidance of autonomous vehicles. In this work, we predict pedestrians by
emulating their own motion planning. From online observations, we infer a
mixture density function for possible destinations. We use this result as the
goal states of a planning stage that performs motion prediction based on common
behavior patterns. The entire system is modeled as one monolithic neural
network and trained via inverse reinforcement learning. Experimental validation
on real world data shows the system's ability to predict both, destinations and
trajectories accurately
- …