120 research outputs found
Nanomechanical Detection of Itinerant Electron Spin Flip
Spin is an intrinsically quantum property, characterized by angular momentum.
A change in the spin state is equivalent to a change in the angular momentum or
mechanical torque. This spin-induced torque has been invoked as the intrinsic
mechanism in experiments ranging from the measurements of angular momentum of
photons g-factor of metals and magnetic resonance to the magnetization reversal
in magnetic multi-layers A spin-polarized current introduced into a nonmagnetic
nanowire produces a torque associated with the itinerant electron spin flip.
Here, we report direct measurement of this mechanical torque and itinerant
electron spin polarization in an integrated nanoscale torsion oscillator, which
could yield new information on the itinerancy of the d-band electrons. The
unprecedented torque sensitivity of 10^{-22} N m/ \sqrt{Hz} may enable
applications for spintronics, precision measurements of CP-violating forces,
untwisting of DNA and torque generating molecules.Comment: 14 pages, 4 figures. visit http://nano.bu.edu/ for related paper
Multi-state Modeling of Biomolecules
Multi-state modeling of biomolecules refers to a series of techniques used to represent and compute the behavior of biological molecules or complexes that can adopt a large number of possible functional states. Biological signaling systems often rely on complexes of biological macromolecules that can undergo several functionally significant modifications that are mutually compatible. Thus, they can exist in a very large number of functionally different states. Modeling such multi-state systems poses two problems: the problem of how to describe and specify a multi-state system (the “specification problem”) and the problem of how to use a computer to simulate the progress of the system over time (the “computation problem”). To address the specification problem, modelers have in recent years moved away from explicit specification of all possible states and towards rule-based formalisms that allow for implicit model specification, including the κ-calculus [1], BioNetGen [2]–[5], the Allosteric Network Compiler [6], and others [7], [8]. To tackle the computation problem, they have turned to particle-based methods that have in many cases proved more computationally efficient than population-based methods based on ordinary differential equations, partial differential equations, or the Gillespie stochastic simulation algorithm [9], [10]. Given current computing technology, particle-based methods are sometimes the only possible option. Particle-based simulators fall into two further categories: nonspatial simulators, such as StochSim [11], DYNSTOC [12], RuleMonkey [9], [13], and the Network-Free Stochastic Simulator (NFSim) [14], and spatial simulators, including Meredys [15], SRSim [16], [17], and MCell [18]–[20]. Modelers can thus choose from a variety of tools, the best choice depending on the particular problem. Development of faster and more powerful methods is ongoing, promising the ability to simulate ever more complex signaling processes in the future
Current and prospective pharmacological targets in relation to antimigraine action
Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon
Modeling the Past: The Paleoethnological Evidence
This chapter considers the earliest Paleolithic, Oldowan (Mode 1), and Acheulean (Mode 2)
cultures of the Old Continent and the traces left by the earliest hominids since their departure
from Africa. According to the most recent archaeological data, they seem to have followed two
main dispersal routes across the Arabian Peninsula toward the Levant, to the north, and the Indian
subcontinent, to the east. According to recent discoveries at Dmanisi in the Caucasus, the first
Paleolithic settlement of Europe is dated to some 1.75 Myr ago, which indicates that the first “out of
Africa” took place at least slightly before this date. The data available for Western Europe show
that the first Paleolithic sites can be attributed to the period slightly before 1.0 Myr ago. The first
well-defined “structural remains” so far discovered in Europe are those of Isernia La Pineta in
Southern Italy, where a semicircular artificial platform made of stone boulders and animal bones
has been excavated. The first hand-thrown hunting weapons come from the site of Scho¨ningen in
north Germany, where the first occurrence of wooden spears, more than 2 m long, has been
recorded from a site attributed to some 0.37 Myr ago. Slightly later began the regular control of
fire. Although most of the archaeological finds of these ages consist of chipped stone artifacts,
indications of art seem to be already present in the Acheulean of Africa and the Indian
subcontinent
- …