274 research outputs found
Automatic Discovery, Association Estimation and Learning of Semantic Attributes for a Thousand Categories
Attribute-based recognition models, due to their impressive performance and
their ability to generalize well on novel categories, have been widely adopted
for many computer vision applications. However, usually both the attribute
vocabulary and the class-attribute associations have to be provided manually by
domain experts or large number of annotators. This is very costly and not
necessarily optimal regarding recognition performance, and most importantly, it
limits the applicability of attribute-based models to large scale data sets. To
tackle this problem, we propose an end-to-end unsupervised attribute learning
approach. We utilize online text corpora to automatically discover a salient
and discriminative vocabulary that correlates well with the human concept of
semantic attributes. Moreover, we propose a deep convolutional model to
optimize class-attribute associations with a linguistic prior that accounts for
noise and missing data in text. In a thorough evaluation on ImageNet, we
demonstrate that our model is able to efficiently discover and learn semantic
attributes at a large scale. Furthermore, we demonstrate that our model
outperforms the state-of-the-art in zero-shot learning on three data sets:
ImageNet, Animals with Attributes and aPascal/aYahoo. Finally, we enable
attribute-based learning on ImageNet and will share the attributes and
associations for future research.Comment: Accepted as a conference paper at CVPR 201
Deep Perceptual Mapping for Thermal to Visible Face Recognition
Cross modal face matching between the thermal and visible spectrum is a much
de- sired capability for night-time surveillance and security applications. Due
to a very large modality gap, thermal-to-visible face recognition is one of the
most challenging face matching problem. In this paper, we present an approach
to bridge this modality gap by a significant margin. Our approach captures the
highly non-linear relationship be- tween the two modalities by using a deep
neural network. Our model attempts to learn a non-linear mapping from visible
to thermal spectrum while preserving the identity in- formation. We show
substantive performance improvement on a difficult thermal-visible face
dataset. The presented approach improves the state-of-the-art by more than 10%
in terms of Rank-1 identification and bridge the drop in performance due to the
modality gap by more than 40%.Comment: BMVC 2015 (oral
Tracking and modeling focus of attention in meetings [online]
Abstract
This thesis addresses the problem of tracking the focus of
attention of people. In particular, a system to track the focus
of attention of participants in meetings is developed. Obtaining
knowledge about a person\u27s focus of attention is an important
step towards a better understanding of what people do, how and
with what or whom they interact or to what they refer. In
meetings, focus of attention can be used to disambiguate the
addressees of speech acts, to analyze interaction and for
indexing of meeting transcripts. Tracking a user\u27s focus of
attention also greatly contributes to the improvement of
humancomputer interfaces since it can be used to build interfaces
and environments that become aware of what the user is paying
attention to or with what or whom he is interacting.
The direction in which people look; i.e., their gaze, is closely
related to their focus of attention. In this thesis, we estimate
a subject\u27s focus of attention based on his or her head
orientation. While the direction in which someone looks is
determined by head orientation and eye gaze, relevant literature
suggests that head orientation alone is a su#cient cue for the
detection of someone\u27s direction of attention during social
interaction. We present experimental results from a user study
and from several recorded meetings that support this hypothesis.
We have developed a Bayesian approach to model at whom or what
someone is look ing based on his or her head orientation. To
estimate head orientations in meetings, the participants\u27 faces
are automatically tracked in the view of a panoramic camera and
neural networks are used to estimate their head orientations
from preprocessed images of their faces. Using this approach,
the focus of attention target of subjects could be correctly
identified during 73% of the time in a number of evaluation meet
ings with four participants.
In addition, we have investigated whether a person\u27s focus of
attention can be predicted from other cues. Our results show
that focus of attention is correlated to who is speaking in a
meeting and that it is possible to predict a person\u27s focus of
attention
based on the information of who is talking or was talking before
a given moment.
We have trained neural networks to predict at whom a person is
looking, based on information about who was speaking. Using this
approach we were able to predict who is looking at whom with 63%
accuracy on the evaluation meetings using only information about
who was speaking. We show that by using both head orientation
and speaker information to estimate a person\u27s focus, the
accuracy of focus detection can be improved compared to just
using one of the modalities for focus estimation.
To demonstrate the generality of our approach, we have built a
prototype system to demonstrate focusaware interaction with a
household robot and other smart appliances in a room using the
developed components for focus of attention tracking. In the
demonstration environment, a subject could interact with a
simulated household robot, a speechenabled VCR or with other
people in the room, and the recipient of the subject\u27s speech
was disambiguated based on the user\u27s direction of attention.
Zusammenfassung
Die vorliegende Arbeit beschäftigt sich mit der automatischen
Bestimmung und Verfolgung des Aufmerksamkeitsfokus von Personen
in Besprechungen.
Die Bestimmung des Aufmerksamkeitsfokus von Personen ist zum
Verständnis und zur automatischen Auswertung von
Besprechungsprotokollen sehr wichtig. So kann damit
beispielsweise herausgefunden werden, wer zu einem bestimmten
Zeitpunkt wen angesprochen hat beziehungsweise wer wem zugehört
hat. Die automatische Bestimmung des Aufmerksamkeitsfokus kann
desweiteren zur Verbesserung von Mensch-MaschineSchnittstellen
benutzt werden.
Ein wichtiger Hinweis auf die Richtung, in welche eine Person
ihre Aufmerksamkeit richtet, ist die Kopfstellung der Person.
Daher wurde ein Verfahren zur Bestimmung der Kopfstellungen von
Personen entwickelt. Hierzu wurden künstliche neuronale Netze
benutzt, welche als Eingaben vorverarbeitete Bilder des Kopfes
einer Person erhalten, und als Ausgabe eine Schätzung der
Kopfstellung berechnen. Mit den trainierten Netzen wurde auf
Bilddaten neuer Personen, also Personen, deren Bilder nicht in
der Trainingsmenge enthalten waren, ein mittlerer Fehler von
neun bis zehn Grad für die Bestimmung der horizontalen und
vertikalen Kopfstellung erreicht.
Desweiteren wird ein probabilistischer Ansatz zur Bestimmung von
Aufmerksamkeitszielen vorgestellt. Es wird hierbei ein
Bayes\u27scher Ansatzes verwendet um die Aposterior
iWahrscheinlichkeiten verschiedener Aufmerksamkteitsziele,
gegeben beobachteter Kopfstellungen einer Person, zu bestimmen.
Die entwickelten Ansätze wurden auf mehren Besprechungen mit
vier bis fünf Teilnehmern evaluiert.
Ein weiterer Beitrag dieser Arbeit ist die Untersuchung,
inwieweit sich die Blickrichtung der Besprechungsteilnehmer
basierend darauf, wer gerade spricht, vorhersagen läßt. Es wurde
ein Verfahren entwickelt um mit Hilfe von neuronalen Netzen den
Fokus einer Person basierend auf einer kurzen Historie der
Sprecherkonstellationen zu schätzen.
Wir zeigen, dass durch Kombination der bildbasierten und der
sprecherbasierten Schätzung des Aufmerksamkeitsfokus eine
deutliche verbesserte Schätzung erreicht werden kann.
Insgesamt wurde mit dieser Arbeit erstmals ein System
vorgestellt um automatisch die Aufmerksamkeit von Personen in
einem Besprechungsraum zu verfolgen.
Die entwickelten Ansätze und Methoden können auch zur Bestimmung
der Aufmerksamkeit von Personen in anderen Bereichen,
insbesondere zur Steuerung von computerisierten, interaktiven
Umgebungen, verwendet werden. Dies wird an einer
Beispielapplikation gezeigt
- …