274 research outputs found

    Automatic Discovery, Association Estimation and Learning of Semantic Attributes for a Thousand Categories

    Full text link
    Attribute-based recognition models, due to their impressive performance and their ability to generalize well on novel categories, have been widely adopted for many computer vision applications. However, usually both the attribute vocabulary and the class-attribute associations have to be provided manually by domain experts or large number of annotators. This is very costly and not necessarily optimal regarding recognition performance, and most importantly, it limits the applicability of attribute-based models to large scale data sets. To tackle this problem, we propose an end-to-end unsupervised attribute learning approach. We utilize online text corpora to automatically discover a salient and discriminative vocabulary that correlates well with the human concept of semantic attributes. Moreover, we propose a deep convolutional model to optimize class-attribute associations with a linguistic prior that accounts for noise and missing data in text. In a thorough evaluation on ImageNet, we demonstrate that our model is able to efficiently discover and learn semantic attributes at a large scale. Furthermore, we demonstrate that our model outperforms the state-of-the-art in zero-shot learning on three data sets: ImageNet, Animals with Attributes and aPascal/aYahoo. Finally, we enable attribute-based learning on ImageNet and will share the attributes and associations for future research.Comment: Accepted as a conference paper at CVPR 201

    Deep Perceptual Mapping for Thermal to Visible Face Recognition

    Get PDF
    Cross modal face matching between the thermal and visible spectrum is a much de- sired capability for night-time surveillance and security applications. Due to a very large modality gap, thermal-to-visible face recognition is one of the most challenging face matching problem. In this paper, we present an approach to bridge this modality gap by a significant margin. Our approach captures the highly non-linear relationship be- tween the two modalities by using a deep neural network. Our model attempts to learn a non-linear mapping from visible to thermal spectrum while preserving the identity in- formation. We show substantive performance improvement on a difficult thermal-visible face dataset. The presented approach improves the state-of-the-art by more than 10% in terms of Rank-1 identification and bridge the drop in performance due to the modality gap by more than 40%.Comment: BMVC 2015 (oral

    Tracking and modeling focus of attention in meetings [online]

    Get PDF
    Abstract This thesis addresses the problem of tracking the focus of attention of people. In particular, a system to track the focus of attention of participants in meetings is developed. Obtaining knowledge about a person\u27s focus of attention is an important step towards a better understanding of what people do, how and with what or whom they interact or to what they refer. In meetings, focus of attention can be used to disambiguate the addressees of speech acts, to analyze interaction and for indexing of meeting transcripts. Tracking a user\u27s focus of attention also greatly contributes to the improvement of human­computer interfaces since it can be used to build interfaces and environments that become aware of what the user is paying attention to or with what or whom he is interacting. The direction in which people look; i.e., their gaze, is closely related to their focus of attention. In this thesis, we estimate a subject\u27s focus of attention based on his or her head orientation. While the direction in which someone looks is determined by head orientation and eye gaze, relevant literature suggests that head orientation alone is a su#cient cue for the detection of someone\u27s direction of attention during social interaction. We present experimental results from a user study and from several recorded meetings that support this hypothesis. We have developed a Bayesian approach to model at whom or what someone is look­ ing based on his or her head orientation. To estimate head orientations in meetings, the participants\u27 faces are automatically tracked in the view of a panoramic camera and neural networks are used to estimate their head orientations from pre­processed images of their faces. Using this approach, the focus of attention target of subjects could be correctly identified during 73% of the time in a number of evaluation meet­ ings with four participants. In addition, we have investigated whether a person\u27s focus of attention can be pre­dicted from other cues. Our results show that focus of attention is correlated to who is speaking in a meeting and that it is possible to predict a person\u27s focus of attention based on the information of who is talking or was talking before a given moment. We have trained neural networks to predict at whom a person is looking, based on information about who was speaking. Using this approach we were able to predict who is looking at whom with 63% accuracy on the evaluation meetings using only information about who was speaking. We show that by using both head orientation and speaker information to estimate a person\u27s focus, the accuracy of focus detection can be improved compared to just using one of the modalities for focus estimation. To demonstrate the generality of our approach, we have built a prototype system to demonstrate focus­aware interaction with a household robot and other smart appliances in a room using the developed components for focus of attention tracking. In the demonstration environment, a subject could interact with a simulated household robot, a speech­enabled VCR or with other people in the room, and the recipient of the subject\u27s speech was disambiguated based on the user\u27s direction of attention. Zusammenfassung Die vorliegende Arbeit beschäftigt sich mit der automatischen Bestimmung und Ver­folgung des Aufmerksamkeitsfokus von Personen in Besprechungen. Die Bestimmung des Aufmerksamkeitsfokus von Personen ist zum Verständnis und zur automatischen Auswertung von Besprechungsprotokollen sehr wichtig. So kann damit beispielsweise herausgefunden werden, wer zu einem bestimmten Zeitpunkt wen angesprochen hat beziehungsweise wer wem zugehört hat. Die automatische Bestim­mung des Aufmerksamkeitsfokus kann desweiteren zur Verbesserung von Mensch-Maschine­Schnittstellen benutzt werden. Ein wichtiger Hinweis auf die Richtung, in welche eine Person ihre Aufmerksamkeit richtet, ist die Kopfstellung der Person. Daher wurde ein Verfahren zur Bestimmung der Kopfstellungen von Personen entwickelt. Hierzu wurden künstliche neuronale Netze benutzt, welche als Eingaben vorverarbeitete Bilder des Kopfes einer Person erhalten, und als Ausgabe eine Schätzung der Kopfstellung berechnen. Mit den trainierten Netzen wurde auf Bilddaten neuer Personen, also Personen, deren Bilder nicht in der Trainingsmenge enthalten waren, ein mittlerer Fehler von neun bis zehn Grad für die Bestimmung der horizontalen und vertikalen Kopfstellung erreicht. Desweiteren wird ein probabilistischer Ansatz zur Bestimmung von Aufmerksamkeits­zielen vorgestellt. Es wird hierbei ein Bayes\u27scher Ansatzes verwendet um die A­posterior iWahrscheinlichkeiten verschiedener Aufmerksamkteitsziele, gegeben beobachteter Kopfstellungen einer Person, zu bestimmen. Die entwickelten Ansätze wurden auf mehren Besprechungen mit vier bis fünf Teilnehmern evaluiert. Ein weiterer Beitrag dieser Arbeit ist die Untersuchung, inwieweit sich die Blickrich­tung der Besprechungsteilnehmer basierend darauf, wer gerade spricht, vorhersagen läßt. Es wurde ein Verfahren entwickelt um mit Hilfe von neuronalen Netzen den Fokus einer Person basierend auf einer kurzen Historie der Sprecherkonstellationen zu schätzen. Wir zeigen, dass durch Kombination der bildbasierten und der sprecherbasierten Schätzung des Aufmerksamkeitsfokus eine deutliche verbesserte Schätzung erreicht werden kann. Insgesamt wurde mit dieser Arbeit erstmals ein System vorgestellt um automatisch die Aufmerksamkeit von Personen in einem Besprechungsraum zu verfolgen. Die entwickelten Ansätze und Methoden können auch zur Bestimmung der Aufmerk­samkeit von Personen in anderen Bereichen, insbesondere zur Steuerung von comput­erisierten, interaktiven Umgebungen, verwendet werden. Dies wird an einer Beispielapplikation gezeigt
    corecore