2,276 research outputs found
The risk linked to ionizing radiation: an alternative epidemiologic approach.
Radioprotection norms have been based on risk models that have evolved over time. These models show relationships between exposure and observed effects. There is a high level of uncertainty regarding lower doses. Recommendations have been based on the conservative hypothesis of a linear relationship without threshold value. This relationship is still debated, and the diverse observations do not allow any definitive conclusion. Available data are contradictory, and various interpretations can be made. Here we review an alternative approach for defining causation and reconciling apparently contradictory conclusions. This alternative epidemiologic approach is based on causal groups: Each component of a causal group is necessary but not sufficient for causality. Many groups may be involved in causality. Thus, ionizing radiation may be a component of one or several causal groups. This formalization reconciles heterogeneous observations but implies searching for the interactions between components, mostly between critical components of a causal profile, and, for instance, the reasons why specific human groups would not show any effect despite exposure, when an effect would be expected
Size-dependent response of foraminiferal calcification to seawater carbonate chemistry
Michael J. Henehan acknowledges financial support from the Yale Peabody Museum.The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the of foraminiferal calcification to future change in atmospheric pCO2.Publisher PDFPeer reviewe
The trade-off between taxi time and fuel consumption in airport ground movement
Environmental impact is a very important agenda item in many sectors nowadays, which the air transportation sector is also trying to reduce
as much as possible. One area which has remained relatively unexplored in this context is the ground movement problem for aircraft on the airport’s surface.
Aircraft have to be routed from a gate to a runway and vice versa and it is
still unknown whether fuel burn and environmental impact reductions will best result from purely minimising the taxi times or whether it is also important to avoid multiple acceleration phases. This paper presents a newly developed multi-objective approach for analysing the trade-off between taxi time and fuel consumption during taxiing. The approach consists of a combination of a graph-based routing algorithm and a population adaptive immune algorithm to discover different speed profiles of aircraft. Analysis with data from a European hub airport has highlighted the impressive performance of the new approach. Furthermore, it is shown that the trade-off between taxi time and fuel consumption is very sensitive to the fuel-related objective function which is used
Recommended from our members
Influenza Research Database: An integrated bioinformatics resource for influenza virus research
The Influenza Research Database (IRD) is a U.S. National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Bioinformatics Resource Center dedicated to providing bioinformatics support for influenza virus research. IRD facilitates the research and development of vaccines, diagnostics and therapeutics against influenza virus by providing a comprehensive collection of influenza-related data integrated from various sources, a growing suite of analysis and visualization tools for data mining and hypothesis generation, personal workbench spaces for data storage and sharing, and active user community support. Here, we describe the recent improvements in IRD including the use of cloud and high performance computing resources, analysis and visualization of user-provided sequence data with associated metadata, predictions of novel variant proteins, annotations of phenotype-associated sequence markers and their predicted phenotypic effects, hemagglutinin (HA) clade classifications, an automated tool for HA subtype numbering conversion, linkouts to disease event data and the addition of host factor and antiviral drug components. All data and tools are freely available without restriction from the IRD website at https://www.fludb.org.National Institutes of Health/National Institute for Allergy and Infectious Diseases [HHSN272201400028C]. Funding for open access charge: J. Craig Venter Institute
Radiation Damping in FRW Space-times with Different Topologies
We study the role played by the compactness and the degree of connectedness
in the time evolution of the energy of a radiating system in the
Friedmann-Robertson-Walker (FRW) space-times whose spacelike
sections are the Euclidean 3-manifold and six topologically
non-equivalent flat orientable compact multiply connected Riemannian
3-manifolds. An exponential damping of the energy is present in the
case, whereas for the six compact flat 3-spaces it is found
basically the same pattern for the evolution of the energy, namely relative
minima and maxima occurring at different times (depending on the degree of
connectedness) followed by a growth of . Likely reasons for this
divergent behavior of in these compact flat 3-manifolds are discussed
and further developments are indicated. A misinterpretation of Wolf's results
regarding one of the six orientable compact flat 3-manifolds is also indicated
and rectified.Comment: 13 pages, RevTeX, 5 figures, To appear in Phys. Rev. D 15, vol. 57
(1998
Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration
Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration. However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale
Priority III: top 10 rapid review methodology research priorities identified using a James Lind Alliance Priority Setting Partnership
Objectives
A rapid review is a form of evidence synthesis considered a resource-efficient alternative to the conventional systematic review. Despite a dramatic rise in the number of rapid reviews commissioned and conducted in response to the coronavirus disease 2019 pandemic, published evidence on the optimal methods of planning, doing, and sharing the results of these reviews is lacking. The Priority III study aimed to identify the top 10 unanswered questions on rapid review methodology to be addressed by future research.
Study Design and Setting
A modified James Lind Alliance Priority Setting Partnership approach was adopted. This approach used two online surveys and a virtual prioritization workshop with patients and the public, reviewers, researchers, clinicians, policymakers, and funders to identify and prioritize unanswered questions.
Results
Patients and the public, researchers, reviewers, clinicians, policymakers, and funders identified and prioritized the top 10 unanswered research questions about rapid review methodology. Priorities were identified throughout the entire review process, from stakeholder involvement and formulating the question, to the methods of a systematic review that are appropriate to use, through to the dissemination of results.
Conclusion
The results of the Priority III study will inform the future research agenda on rapid review methodology. We hope this will enhance the quality of evidence produced by rapid reviews, which will ultimately inform decision-making in the context of healthcare
Reduced expression of lamin A/C correlates with poor histological differentiation and prognosis in primary gastric carcinoma
<p>Abstract</p> <p>Background</p> <p>Lamin A/C is very important in DNA replication, RNA dependent transcription and nuclear stabilization. Reduced or absent lamin A/C expression has been found to be a common feature of a variety of different cancers. To investigate the role of lamin A/C in gastric carcinoma (GC) pathogenesis, we analyzed the correlations between the lamin A/C expression level and clinicopathological factors and studied its prognostic role in primary GC.</p> <p>Methods</p> <p>The expression of lamin A/C at mRNA level was detected by the reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR, and western blot was used to examine the protein expression. Lamin A/C expression and its prognostic significance were investigated by performing immunohistochemical analysis on a total of 126 GC clinical tissue samples.</p> <p>Results</p> <p>Both lamin A/C mRNA and protein expression were downregulated in the majority of tumours compared with corresponding normal gastric tissues (<it>p </it>= 0.011 and <it>p </it>= 0.036, respectively). Real time RT-PCR further validated that downregulation of lamin A/C is associated with poor histological differentiation (r = 0.438, <it>p </it>= 0.025). The immunohistochemical staining showed an evident decrease of lamin A/C expression in 55.6% (70/126) GC cases. Importantly, the negative lamin A/C expression correlated strongly with histological classification (r = 0.361, <it>p </it>= 0.034). Survival analysis revealed that patients with lamin A/C downregulation have a poorer prognosis (<it>p </it>= 0.034). In addition, lamin A/C expression was found to be an independent prognostic factor by multivariate analysis.</p> <p>Conclusion</p> <p>Data of this study suggest that lamin A/C is involved in the pathogenesis of GC, and it may serve as a valuable biomarker for assessing the prognosis for primary GC.</p
- …