6 research outputs found

    AREDS Formula, Warfarin, and Bleeding: A Case Report from the Michigan Anticoagulation Quality Improvement Initiative

    Get PDF
    Importance. The anticoagulant warfarin has been shown to interact with other medications, vitamin K containing foods, and over-the-counter products. These interactions may inhibit or potentiate the effect of warfarin, resulting in serious clotting or bleeding events. Observations. We report the case of an 84-year-old woman with atrial fibrillation, prescribed warfarin in May 2010 for stroke prevention. Her international normalized ratio (INR) was stable until April 2013, when she was prescribed AREDS (Age Related Eye Disease Study) formula pills, an eye vitamin compound, to slow the progression of age-related macular degeneration. This change was not reported to the Anticoagulation Service. Eighteen days later, she presented to the ED with groin and back pain and an INR of 10.4. An abdominal CT revealed a retroperitoneal hemorrhage with extension in multiple muscles. Both warfarin and AREDS were discontinued and the patient was discharged to subacute rehabilitation. This case was reviewed by the Anticoagulation Service and actions were taken to prevent similar adverse events. Conclusions. This report provides an example of the potential danger of supplement use, in this case, AREDS formula, in patients prescribed warfarin, and the importance of communicating medication changes to the providers responsible for warfarin management

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore