136 research outputs found
Year in review 2008: Critical Care - sepsis
The present report highlights the most important papers appearing in Critical Care and other major journals about severe sepsis, the systemic inflammatory response and multiorgan dysfunction over the past year. A number of these clinical and laboratory studies will have a considerable impact on the sepsis research agenda for years to come. The steroid controversy, the debate over tight glycemic control, the colloid versus crystalloid issue, the value of selective decontamination of the digestive tract, the enlarging role of biomarkers, the value of genomics and rapid diagnostic techniques have all been prominently featured in recent publications. Basic research into novel predictive assays, genetic polymorphisms, and new molecular methods to risk-stratify and to determine treatment options for sepsis have occupied much of the Critical Care publications relating to sepsis pathophysiology in 2008. We will attempt to briefly summarize what we consider to be the most significant contributions to the sepsis literature over the last year, and their likely ramifications in the future, for critical care clinicians, clinical investigators and basic researchers alike
Coagulation abnormalities in critically ill patients
Many critically ill patients develop hemostatic abnormalities, ranging from isolated thrombocytopenia or prolonged global clotting tests to complex defects, such as disseminated intravascular coagulation. There are many causes for a deranged coagulation in critically ill patients and each of these underlying disorders may require specific therapeutic or supportive management. In recent years, new insights into the pathogenesis and clinical management of many coagulation defects in critically ill patients have been accumulated and this knowledge is helpful in determining the optimal diagnostic and therapeutic strategy
Bench-to-bedside review: Quorum sensing and the role of cell-to-cell communication during invasive bacterial infection
Bacteria communicate extensively with each other and employ a communal approach to facilitate survival in hostile environments. A hierarchy of cell-to-cell signaling pathways regulates bacterial growth, metabolism, biofilm formation, virulence expression, and a myriad of other essential functions in bacterial populations. The notion that bacteria can signal each other and coordinate their assault patterns against susceptible hosts is now well established. These signaling networks represent a previously unrecognized survival strategy by which bacterial pathogens evade antimicrobial defenses and overwhelm the host. These quorum sensing communication signals can transgress species barriers and even kingdom barriers. Quorum sensing molecules can regulate human transcriptional programs to the advantage of the pathogen. Human stress hormones and cytokines can be detected by bacterial quorum sensing systems. By this mechanism, the pathogen can detect the physiologically stressed host, providing an opportunity to invade when the patient is most vulnerable. These rather sophisticated, microbial communication systems may prove to be a liability to pathogens as they make convenient targets for therapeutic intervention in our continuing struggle to control microbial pathogens
The dysfunctional host response to influenza A H7N9: a potential treatment option?
The newly emerging human pathogen influenza A H7N9 represents a potentially major threat to human health. The virus was first shown to be pathogenic in humans in 2013, and outbreaks continue to occur in China to the present time. The current incident mortality rate is disturbingly high despite the frequent use of antiviral therapy and intensive care management. If the virus gains the capacity for efficient person-to-person transmission, a global influenza pandemic could ensue with devastating consequences. In the absence of an effective vaccine, targeted regulation of the host immune response by immune modulators might be considered. Readily available, approved drugs with immune-modulating activities might prove to be a treatment option in combination with existing antiviral agents and supportive care
Clinical review: The role of biomarkers in the diagnosis and management of community-acquired pneumonia
In patients with community-acquired pneumonia, traditional criteria of infection based on clinical signs and symptoms, clinical scoring systems, and general inflammatory indicators (for example, leukocytosis, fever, C-reactive protein and blood cultures) are often of limited clinical value and remain an unreliable guide to etiology, optimal therapy and prognosis. Procalcitonin is superior to other commonly used markers in its specificity for bacterial infection (allowing alternative diagnoses to be excluded), as an indicator of disease severity and risk of death, and mainly as a guide to the necessity for antibiotic therapy. It can therefore be viewed as a diagnostic, prognostic, and perhaps even theragnostic test. It more closely matches the criteria for usefulness than other candidate biomarkers such as C-reactive protein, which is rather a nonspecific marker of acute phase inflammation, and proinflammatory cytokines such as plasma IL-6 levels that are highly variable, cumbersome to measure, and lack specificity for systemic infection. Elevated levels of pro-adrenomedullin, copeptin (which is produced in equimolar amounts to vasopressin), natriuretic peptides and cortisol are significantly related to mortality in community-acquired pneumonia, as are other prohormones such as pro-atrial natriuretic peptide, coagulation markers, and other combinations of inflammatory cytokine profiles. However, all biomarkers have weaknesses as well as strengths. None should be used on its own; and none is anything more than an aid in the exercise of clinical judgment based upon a synthesis of available clinical, physiologic and laboratory features in each patient
A clinical evaluation committee assessment of recombinant human tissue factor pathway inhibitor (tifacogin) in patients with severe community-acquired pneumonia
INTRODUCTION: The purpose of this analysis was to determine the potential efficacy of recombinant human tissue factor pathway inhibitor (tifacogin) in a subpopulation of patients with community-acquired pneumonia (CAP) from a phase III study of severe sepsis. METHODS : A retrospective review of patients with suspected pneumonia was conducted by an independent clinical evaluation committee (CEC) blinded to treatment assignment. The CEC reanalyzed data from patients enrolled in an international multicenter clinical trial of sepsis who had a diagnosis of pneumonia as the probable source of sepsis. The primary efficacy measure was all-cause 28-day mortality. RESULTS: Of 847 patients identified on case report forms with a clinical diagnosis of pneumonia, 780 (92%) were confirmed by the CEC to have pneumonia. Of confirmed pneumonia cases, 496 (63.6%) met the definition for CAP. In the CEC CAP population, the mortality rates of the tifacogin and placebo groups were 70/251 (27.9%) and 80/245 (32.7%), respectively. The strongest signals were seen in patients with CAP not receiving concomitant heparin, having microbiologically confirmed infection, or having the combination of documented infection and no heparin. The reduction in mortality in this narrowly defined subgroup when treated with tifacogin compared with placebo was statistically significant (17/58 [29.3%] with tifacogin and 28/54 [51.9%] with placebo; unadjusted P value of less than 0.02). CONCLUSIONS: Tifacogin administration did not significantly reduce mortality in any severe CAP patient. Exploratory analyses showed an improved survival in patients who did not receive concomitant heparin with microbiologically confirmed infections. These data support the rationale of an ongoing phase III study exploring the potential benefit of tifacogin in severe CAP. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT00084071
- …