261 research outputs found
Multi-Institutional experience with FOLFIRINOX in pancreatic adenocarcinoma
Combination chemotherapy with FOLFIRINOX (oxaliplatin, irinotecan, fluorouracil, and leucovorin) was shown to be effective in a large phase III trial.
The purpose of this study was to examine the tolerance and effectiveness of FOLFIRINOX as practiced outside of the confines of a clinical trial and to document any dose modifications used by practicing oncologists.
Data on patients with all stages of pancreatic adenocarcinoma treated with FOLFIRINOX at three institutions was analyzed for efficacy, tolerance, and use of any dose modifications.
Total of 61 patients was included in this review. Median age was 58 years (range: 37 to 72 years), 33 were male (54.1%) and majority had ECOG performance of 0 or 1 (86.9%, 53 patients). Thirty-eight (62.3%) had metastatic disease, while 23 (37.7%) were treated for locally advanced or borderline resectable disease. Patients were treated with a median number of four cycles of FOLFIRINOX, with dose modifications in 58.3% (176/302) of all cycles. Ten patients had stable disease (16.4%), four had a partial response (6.6%) while eight had progressive disease (13.1%) on best imaging following therapy. Median progression-free survival and overall survival were 7.5 months and 13.5 months, respectively. The most common grade 3-4 adverse event was neutropenia at 19.7% (12 cases), with 4.9% (3 cases) rate of febrile neutropenia. Twenty-one patients (34.4%) were hospitalized as a result of therapy but there were no therapy-related deaths. Twenty-three (37.7%) had therapy eventually discontinued as a result of adverse events.
Despite substantial rates of adverse events and use of dose modifications, FOLFIRINOX was found to be clinically effective in both metastatic and non-metastatic patients. Regimen toxicity did not detract from overall response and survival
B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response
We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al
Whole-genome analysis of Exserohilum rostratum from an outbreak of fungal meningitis and other infections
Exserohilum rostratum was the cause of most cases of fungal meningitis and other infections associated with the injection of contaminated methylprednisolone acetate produced by the New England Compounding Center (NECC). Until this outbreak, very few human cases of Exserohilum infection had been reported, and very little was known about this dematiaceous fungus, which usually infects plants. Here, we report using whole-genome sequencing (WGS) for the detection of single nucleotide polymorphisms (SNPs) and phylogenetic analysis to investigate the molecular origin of the outbreak using 22 isolates of E. rostratum retrieved from 19 case patients with meningitis or epidural/spinal abscesses, 6 isolates from contaminated NECC vials, and 7 isolates unrelated to the outbreak. Our analysis indicates that all 28 isolates associated with the outbreak had nearly identical genomes of 33.8 Mb. A total of 8 SNPs were detected among the outbreak genomes, with no more than 2 SNPs separating any 2 of the 28 genomes. The outbreak genomes were separated from the next most closely related control strain by ∼136,000 SNPs. We also observed significant genomic variability among strains unrelated to the outbreak, which may suggest the possibility of cryptic speciation in E. rostratum
Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection
Mucosa-associated invariant T (MAIT) cells are a unique population of αβ T cells in mammals that reside preferentially in mucosal tissues and express an invariant Vα paired with limited Vβ T-cell receptor (TCR) chains. Furthermore, MAIT cell development is dependent upon the expression of the evolutionarily conserved major histocompatibility complex (MHC) class Ib molecule MR1. Using in vitro assays, recent studies have shown that mouse and human MAIT cells are activated by antigen-presenting cells (APCs) infected with diverse microbes, including numerous bacterial strains and yeasts, but not viral pathogens. However, whether MAIT cells play an important, and perhaps unique, role in controlling microbial infection has remained unclear. To probe MAIT cell function, we show here that purified polyclonal MAIT cells potently inhibit intracellular bacterial growth of Mycobacterium bovis BCG in macrophages (MΦ) in coculture assays, and this inhibitory activity was dependent upon MAIT cell selection by MR1, secretion of gamma interferon (IFN-γ), and an innate interleukin 12 (IL-12) signal from infected MΦ. Surprisingly, however, the cognate recognition of MR1 by MAIT cells on the infected MΦ was found to play only a minor role in MAIT cell effector function. We also report that MAIT cell-deficient mice had higher bacterial loads at early times after infection compared to wild-type (WT) mice, demonstrating that MAIT cells play a unique role among innate lymphocytes in protective immunity against bacterial infection
Subordinates’ Resistance and Managers’ Evaluations of Subordinates’ Performance
The authors explored the validity of two perspectives as to how managers evaluate subordinates who resist downward influence attempts: a uniformly dysfunctional perspective (i.e., managers regard all manifestations of resistance as indicators of ineffective influence and rate subordinates unfavorably when they resist) and a multifunctional perspective (i.e., managers regard some manifestations of resistance as more constructive than others and rate subordinates more favorably when they employ constructive resistance tactics). The results of two studies provided support for an interactive model, which predicts that the uniformly dysfunctional perspective is characteristic of lower quality leader-member exchange (LMX) relationships and that the multifunctional perspective is characteristic of higher quality leader-member exchanges
Subordinates’ Resistance and Managers’ Evaluations of Subordinates’ Performance
The authors explored the validity of two perspectives as to how managers evaluate subordinates who resist downward influence attempts: a uniformly dysfunctional perspective (i.e., managers regard all manifestations of resistance as indicators of ineffective influence and rate subordinates unfavorably when they resist) and a multifunctional perspective (i.e., managers regard some manifestations of resistance as more constructive than others and rate subordinates more favorably when they employ constructive resistance tactics). The results of two studies provided support for an interactive model, which predicts that the uniformly dysfunctional perspective is characteristic of lower quality leader-member exchange (LMX) relationships and that the multifunctional perspective is characteristic of higher quality leader-member exchanges
Phase II trial of levocetirizine with capecitabine and bevacizumab to overcome the resistance of antiangiogenic therapies in refractory metastatic colorectal cancer
Background: Despite the clinical success of vascular endothelial growth factor (VEGF) blockade in metastatic colorectal cancers (mCRC), resistance to anti-angiogenic drugs invariably develops. IL-8 and other cytokines have been implicated in development of resistance to anti-angiogenic therapy. Levocetirizine is a second generation H1 antihistamine with anti-inflammatory and IL-8 suppression properties. We conducted a phase II trial combining levocetirizine with capecitabine and bevacizumab to potentially overcome anti-angiogenic therapy resistance in patients with refractory mCRC.
Methods: This was a single-center open-label prospective trial in refractory mCRC patients. Treatment consisted of oral capecitabine 850 mg/m
Results: Forty-seven patients were enrolled in the trial to have 36 evaluable patients. Arm A enrolled 23 patients and Arm B enrolled 24 patients. Fifty percent of patients had progressive disease and 62% of patients had stable disease in each arm as best response. There was no demonstrable difference in PFS between the two arms (log-rank test P=0.83). Median time to progression was 3.4 months in Arm A and 3.5 months in Arm B.
Conclusions: Median PFS in the trial was comparable to and appeared to be better than other regimens used in the refractory setting (e.g., median PFS of 1.9 months for regorafenib). Cytokine measurement with IL-8 levels did not show any correlation with progression free survival but patients with stable disease showed overall lower levels of IL-8 as compared to patients with progressive disease in the cytokine analysis
Recommended from our members
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.Postprint (published version
Usefulness of Heat Map Explanations for Deep-Learning-Based Electrocardiogram Analysis
Deep neural networks are complex machine learning models that have shown promising results in analyzing high-dimensional data such as those collected from medical examinations. Such models have the potential to provide fast and accurate medical diagnoses. However, the high complexity makes deep neural networks and their predictions difficult to understand. Providing model explanations can be a way of increasing the understanding of “black box” models and building trust. In this work, we applied transfer learning to develop a deep neural network to predict sex from electrocardiograms. Using the visual explanation method Grad-CAM, heat maps were generated from the model in order to understand how it makes predictions. To evaluate the usefulness of the heat maps and determine if the heat maps identified electrocardiogram features that could be recognized to discriminate sex, medical doctors provided feedback. Based on the feedback, we concluded that, in our setting, this mode of explainable artificial intelligence does not provide meaningful information to medical doctors and is not useful in the clinic. Our results indicate that improved explanation techniques that are tailored to medical data should be developed before deep neural networks can be applied in the clinic for diagnostic purposes
- …
