14 research outputs found

    Polyp measurement and size categorisation by CT colonography: effect of observer experience in a multi-centre setting

    No full text
    The extent measurement error on CT colonography influences polyp categorisation according to established management guidelines is studied using twenty-eight observers of varying experience to classify polyps seen at CT colonography as either 'medium' (maximal diameter 6-9 mm) or 'large' (maximal diameter 10 mm or larger). Comparison was then made with the reference diameter obtained in each patient via colonoscopy. The Bland-Altman method was used to assess agreement between observer measurements and colonoscopy, and differences in measurement and categorisation was assessed using Kruskal-Wallis and Chi-squared test statistics respectively. Observer measurements on average underestimated the diameter of polyps when compared to the reference value, by approximately 2-3 mm, irrespective of observer experience. Ninety-five percent limits of agreement were relatively wide for all observer groups, and had sufficient span to encompass different size categories for polyps. There were 167 polyp observations and 135 (81%) were correctly categorised. Of the 32 observations that were miscategorised, 5 (16%) were overestimations and 27 (84%) were underestimations (i.e. large polyps misclassified as medium). Caution should be exercised for polyps whose colonographic diameter is below but close to the 1-cm boundary threshold in order to avoid potential miscategorisation of advanced adenomas

    Oxygen spectroscopy and polarization-dependent imaging contrast (PIC)-mapping of calcium carbonate minerals and biominerals

    No full text
    X-ray absorption near-edge structure (XANES) spectroscopy and spectromicroscopy have been extensively used to characterize biominerals. Using either Ca or C spectra, unique information has been obtained regarding amorphous biominerals and nanocrystal orientations. Building on these results, we demonstrate that recording XANES spectra of calcium carbonate at the oxygen K-edge enables polarization-dependent imaging contrast (PIC) mapping with unprecedented contrast, signal-to-noise ratio, and magnification. O and Ca spectra are presented for six calcium carbonate minerals: aragonite, calcite, vaterite, monohydrocalcite, and both hydrated and anhydrous amorphous calcium carbonate. The crystalline minerals reveal excellent agreement of the extent and direction of polarization dependences in simulated and experimental XANES spectra due to X-ray linear dichroism. This effect is particularly strong for aragonite, calcite, and vaterite. In natural biominerals, oxygen PIC-mapping generated high-magnification maps of unprecedented clarity from nacre and prismatic structures and their interface in Mytilus californianus shells. These maps revealed blocky aragonite crystals at the nacre-prismatic boundary and the narrowest calcite needle-prisms. In the tunic spicules of Herdmania momus, O PIC-mapping revealed the size and arrangement of some of the largest vaterite single crystals known. O spectroscopy therefore enables the simultaneous measurement of chemical and orientational information in CaCO3 biominerals and is thus a powerful means for analyzing these and other complex materials. As described here, PIC-mapping and spectroscopy at the O K-edge are methods for gathering valuable data that can be carried out using spectromicroscopy beamlines at most synchrotrons without the expense of additional equipment

    Oxygen Spectroscopy and Polarization-Dependent Imaging Contrast (PIC)-Mapping of Calcium Carbonate Minerals and Biominerals

    No full text
    X-ray absorption near-edge structure (XANES) spectroscopy and spectromicroscopy have been extensively used to characterize biominerals. Using either Ca or C spectra, unique information has been obtained regarding amorphous biominerals and nanocrystal orientations. Building on these results, we demonstrate that recording XANES spectra of calcium carbonate at the oxygen K-edge enables polarization-dependent imaging contrast (PIC) mapping with unprecedented contrast, signal-to-noise ratio, and magnification. O and Ca spectra are presented for six calcium carbonate minerals: aragonite, calcite, vaterite, monohydrocalcite, and both hydrated and anhydrous amorphous calcium carbonate. The crystalline minerals reveal excellent agreement of the extent and direction of polarization dependences in simulated and experimental XANES spectra due to X-ray linear dichroism. This effect is particularly strong for aragonite, calcite, and vaterite. In natural biominerals, oxygen PIC-mapping generated high-magnification maps of unprecedented clarity from nacre and prismatic structures and their interface in Mytilus californianus shells. These maps revealed blocky aragonite crystals at the nacre–prismatic boundary and the narrowest calcite needle-prisms. In the tunic spicules of Herdmania momus, O PIC-mapping revealed the size and arrangement of some of the largest vaterite single crystals known. O spectroscopy therefore enables the simultaneous measurement of chemical and orientational information in CaCO<sub>3</sub> biominerals and is thus a powerful means for analyzing these and other complex materials. As described here, PIC-mapping and spectroscopy at the O K-edge are methods for gathering valuable data that can be carried out using spectromicroscopy beamlines at most synchrotrons without the expense of additional equipment
    corecore