832 research outputs found

    FISH1D 2.1 User’s Manual

    Get PDF
    FISH1D is a computer program that solves the one-dimensional Poisson equation for electrostatic Fields In Semiconductor Heterostructures. The program will print or plot the electrostatic potential, electric field, electron and hole densities, dopant density, ionized dopant density, and other quantities of interest versus position at an applied bias voltage (assuming zero current). A capacitance or sheet carrier concentration versus voltage analysis may also be performed. While FISH1D was originally written for the ternary AlxGa1_xAs, it has been modified to simulate CdxHg1_xTe, ZnSe, GexSi1_x, and Si as well, and the program can be readily modified to analyze other semiconductors through the addition of new material subroutines or using the most recent option, the MATDEF card. This card enables the user to enter new material definitions by layers in the input deck without having to recompile, an advantage of FISH1D 2.1 over FISH1D 2.0. The primary purpose of this document is explain how to use FISH1D; for a more thorough discussion of the numerical implementation of FISH1D, the user is directed to the references. A theoretical basis for FISH1D is provided in Appendix I of this manual. The development of FISH1D was supported by the Semiconductor Research Corporation, the National Science Foundation Materials Research Laboratory, and by the Eastman Kodak Company

    Quantitative Analysis of Particulate Burden in Lung Tissue

    Get PDF
    Numerous methods have been used in the preparation and analysis of the particulate matter deposited in human lungs. Preparation techniques include those for particle isolation and for in situ analysis. Analytical techniques include bulk and particle-by-particle analysis. In this paper, a general discussion of many of these methods is presented along with examples of how two specific techniques have been used. In one study, individual particles from the lungs of 75 randomly selected autopsy cases were analyzed using an automated scanning electron microscopy (SEM)/ energy dispersive X-ray microanalysis (EDX) system. An average of 613 million particles, of exogenous origin, per gram of dry lung tissue were found, the major classes of particles being silica, talc, aluminum silicates, and rutile. In the second study, lungs from 50 randomly selected autopsy cases were analyzed using gravimetric and X-ray diffraction (XRD) analysis. The median total particulate material was 0.33 grams, for cases in which samples were prepared by high temperature ashing, and 0.41 grams, for those in which nitric acid digestion was used. The median amount of quartz for all cases, was 0.044 grams. Samples of eighteen of the 75 lungs previously analyzed by automated SEM/EDX were also analyzed using gravimetric and XRD analysis. A good correlation was seen between the results of the two procedures (r=0.91 for number of exogenous particles versus grams of particulate matter and r=0.97 for number of silica particles versus amount of quartz)

    A large eddy simulation of the dispersion of traffic emissions by moving vehicles at an intersection

    Get PDF
    Traffic induced flow within urban areas can have a significant effect on pollution dispersion, particularly for traffic emissions. Traffic movement results in increased turbulence within the street and the dispersion of pollutants by vehicles as they move through the street. In order to accurately model urban air quality and perform meaningful exposure analysis at the microscale, these effects cannot be ignored. In this paper we introduce a method to simulate traffic induced dispersion at high resolution. The computational fluid dynamics software, Fluidity, is used to model the moving vehicles through a domain consisting of an idealised intersection. A multi-fluid method is used where vehicles are represented as a second fluid which displaces the air as it moves through the domain. The vehicle model is coupled with an instantaneous emissions model which calculates the emission rate of each vehicle at each time step. A comparison is made with a second Fluidity model which simulates the traffic emissions as a line source and does not include moving vehicles. The method is used to demonstrate how moving vehicles can have a significant effect on street level concentration fields and how large vehicles such as buses can also cause acute high concentration events at the roadside which can contribute significantly to overall exposure

    The dehydration, rehydration and tectonic setting of greenstone belts in a portion of the northern Kaapvaal Craton, South Africa

    Get PDF
    High-grade gneiss terranes and low-grade granite-greenstone terranes are well known in several Archaean domains. The geological relationship between these different crustal regions, however, is still controversial. One school of thought favors fundamental genetic differences between high-grade and low-grade terranes while others argue for a depth-controlled crustal evolution. The detailed examination of well-exposed Archaean terranes at different metamorphic grades, therefore, is not only an important source of information about the crustal levels exposed, but also is critical to the understanding of the possible tectonic and metamorphic evolution of greenstone belts with time. Three South African greenstone belts are compared

    Intelligent management of on-street parking provision for the autonomous vehicles era

    Get PDF
    The increasing degree of connectivity between vehicles and infrastructure, and the impending deployment of autonomous vehicles (AV) in urban streets, presents unique opportunities and challenges regarding the on-street parking provision for AVs. This study develops a novel simulation-optimisation approach for intelligent curbside management, based on a metaheuristic technique. The hybrid method balances curb lanes for driving or parking, aiming to minimise the average traffic delay. The model is tested using an idealised grid layout with a range of flow rates and parking policies. Results demonstrate delay decreased by 9%-27% from the benchmark case. Additionally, the traffic delay distribution shows the trade-offs between expanding road capacity and minimising traffic demand through curb management, indicating the interplay between curb parking and traffic management in the AV era

    FISH1D 2.2 User’s Manual

    Get PDF
    FISH1D is a computer program that solves the one-dimensional Poisson equation for electrostatic Fields in Semiconductor Heterostructures. The program will print or plot the electrostatic potential, electric field, electron and hole densities, dopant density, ionized dopant density, and other quantities of interest versus position at an applied bias voltage (assuming zero current). A capacitance or sheet carrier concentration versus voltage analysis may also be performed. While FISH1D was originally written for the ternary Alx Ga1 _xAs, it has been modified to simulate CdxHg1^xTe, ZnSe, GexSi1^ , and Si as well, and the program can be readily modified to analyze other semiconductors through the addition of new material subroutines or using the most recent option, the MATDEF card. This card enables the user to enter new material definitions by layers in the input deck without having to recompile, an advantage of FISHlD 2.1 over FISH1D 2.0. Simulations of bipolar transistors under bias are now possible in FISH1D 2.2, which has an upgraded BIAS card. The primary purpose of this document is explain how to use FISH1D; for a more thorough discussion of the numerical implementation of FISH1D, the user is directed to the references. A theoretical basis for FISH1D is provided in Appendix I of this manual

    Lung Particulate Burdens of Subjects from the Cincinnati, Ohio Urban Area

    Get PDF
    Because of the relatively small data base existing for lung particulate burdens of subjects with no overt pneumoconioses, the total exogenous lung particulate concentrations of 91 subjects from the Cincinnati, Ohio urban area were determined using an automated scanning electron microscope-energy dispersive x-ray analysis-image analysis system. Four of these subjects were foundry workers and had the highest exogenous particle concentrations seen in the 91 lungs, ranging from 1860 to 2990 x 106 particles per gram of dry lung (ppg). The average exogenous particle concentration for the remaining 87 subjects was 476 ± 380 x 106 ppg with a range of 71 to 1860 x 106 ppg. The median size of the exogenous particles in the 87 lungs was narrow, ranging from 0.37 to 1.02 µm. The geometric mean particle size over all 87 lungs was 0.60 µm with a geometric standard deviation (σg) of 2.35. The total exogenous particle levels were elevated for the male subjects compared to females (p=0.015), and were positively associated with age (p=0. 021). However, no correlation was seen between total particle concentration and race or smoking history

    QTc interval and resting heart rate as long-term predictors of mortality in type 1 and type 2 diabetes mellitus: a 23-year follow-up

    Get PDF
    Aims/hypothesis: We evaluated the association of QT interval corrected for heart rate (QTc) and resting heart rate (rHR) with mortality (all-causes, cardiovascular, cardiac, and ischaemic heart disease) in subjects with type 1 and type 2 diabetes. Methods: We followed 523 diabetic patients (221 with type 1 diabetes, 302 with type 2 diabetes) who were recruited between 1974 and 1977 in Switzerland for the WHO Multinational Study of Vascular Disease in Diabetes. Duration of follow-up was 22.6 ± 0.6years. Causes of death were obtained from death certificates, hospital records, post-mortem reports, and additional information given by treating physicians. Results: In subjects with type 1 diabetes QTc, but not rHR, was associated with an increased risk of: (1) all-cause mortality (hazard ratio [HR] 1.10 per 10ms increase in QTc, 95% CI 1.02-1.20, p = 0.011); (2) mortality due to cardiovascular (HR 1.15, 1.02-1.31, p = 0.024); and (3) mortality due to cardiac disease (HR 1.19, 1.03-1.36, p = 0.016). Findings for subjects with type 2 diabetes were different: rHR, but not QTc was associated with mortality due to: (1) all causes (HR 1.31 per 10 beats per min, 95% CI 1.15-1.50, p < 0.001); (2) cardiovascular disease (HR 1.43, 1.18-1.73, p < 0.001); (3) cardiac disease (HR 1.45, 1.19-1.76, p < 0.001); and (4) ischaemic heart disease (HR 1.52, 1.21-1.90, p < 0.001). Effect modification of QTc by type 1 and rHR by type 2 diabetes was statistically significant (p < 0.05 for all terms of interaction). Conclusions/interpretation: QTc is associated with long-term mortality in subjects with type 1 diabetes, whereas rHR is related to increased mortality risk in subjects with type 2 diabete

    Physical Electronics

    Get PDF
    Contains reports on three research projects
    • …
    corecore