21 research outputs found
Cancer health disparities in racial/ethnic minorities in the United States
There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA—African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.Fil: Zavala, Valentina A.. University of California; Estados UnidosFil: Bracci, Paige M.. University of California; Estados UnidosFil: Carethers, John M.. University of Michigan; Estados UnidosFil: Carvajal Carmona, Luis. University of California at Davis; Estados UnidosFil: Coggins, Nicole B.. University of California at Davis; Estados UnidosFil: Cruz Correa, Marcia R.. Universidad de Puerto Rico; Puerto RicoFil: Davis, Melissa. No especifíca;Fil: de Smith, Adam J.. University of California; Estados UnidosFil: Dutil, Julie. Ponce Research Institute; Puerto RicoFil: Figueiredo, Jane C.. Cedars Sinai Medical Center; Estados UnidosFil: Fox, Rena. University of California; Estados UnidosFil: Graves, Kristi D.. University Of Georgetown; Estados UnidosFil: Gomez, Scarlett Lin. University of California; Estados UnidosFil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Neuhausen, Susan L.. No especifíca;Fil: Newman, Lisa. No especifíca;Fil: Nguyen, Tung. University of California; Estados UnidosFil: Palmer, Julie R.. National Institutes of Health; Estados UnidosFil: Palmer, Nynikka R.. University of California; Estados UnidosFil: Pérez Stable, Eliseo J.. National Institutes of Health; Estados UnidosFil: Piawah, Sorbarikor. University of California; Estados UnidosFil: Rodriquez, Erik J.. National Institutes of Health; Estados UnidosFil: Sanabria Salas, María Carolina. Instituto Nacional de Cancerología; ColombiaFil: Schmit, Stephanie L.. University of Southern California; Estados UnidosFil: Serrano Gomez, Silvia J.. Instituto Nacional de Cancerología; ColombiaFil: Stern, Mariana Carla. University of Southern California; Estados UnidosFil: Weitzel, Jeffrey. No especifíca;Fil: Yang, Jun J.. St. Jude Children’s Research Hospital; Estados UnidosFil: Zabaleta, Jovanny. No especifíca;Fil: Ziv, Elad. University of California; Estados UnidosFil: Fejerman, Laura. University of California; Estados Unido
Genetic analysis of tumor progression susceptibility in the mouse skin model
In the field of chemical carcinogenesis the use of animal models has proved to be a useful tool in dissecting the multistage process of tumor formation. In this regard the outbred SENCAR mouse has been the strain of choice in the analysis of skin carcinogenesis given its high sensitivity to the chemically induced acquisition of premalignant lesions, papillomas, and the later progression of these lesions into squamous cell carcinomas (SCC). The derivation of an inbred strain from the SENCAR stock called SSIN, that in spite of a high sensitivity to the development of papillomas lack the ability to transform these premalignant lesions into SCC, suggested that tumor promotion and progression were under the genetic control of different sets of genes. In the present study the nature of susceptibility to tumor progression was investigated. Analysis of F1 hybrids between the outbred SENCAR and SSIN mice suggested that there is at least one dominant gene responsible for susceptibility to tumor progression. Later development of another inbred strain from the outbred SENCAR stock, that had sensitivity to both tumor promotion and progression, allowed the formulation of a more accurate genetic model. Using this newly derived line, SENCAR B/Pt. and SSIN it was determined that there is one dominant tumor progression susceptibility gene. Linkage analysis showed that this gene maps to mouse chromosome 14 and it was possible to narrow the region to a 16 cM interval. In order to better characterize the nature of the progression susceptibility differences between these two strains, their proliferative pattern was investigated. It was found that SENCAR B/Pt, have an enlarged proliferative compartment with overexpression of cyclin D1, p16 and p21. Further studies showed an aberrant overexpression of TGF- in the susceptible strain, an increase in apoptosis, p53 protein accumulation and early loss of connexin 26. These results taken together suggest that papillomas in the SENCAR B/Pt. mice have higher proliferation and may have an increase in genomic instability, these two factors would contribute to a higher sensitivity to tumor progression
Recommended from our members
The association between coffee consumption and bladder cancer in the bladder cancer epidemiology and nutritional determinants (BLEND) international pooled study.
BackgroundInconsistent results for coffee consumption and bladder cancer (BC) risk have been shown in epidemiological studies. This research aims to increase the understanding of the association between coffee consumption and BC risk by bringing together worldwide case-control studies on this topic.MethodsData were collected from 13 case-control comprising of 5,911 cases and 16,172 controls. Pooled multivariate odds ratios (ORs), with corresponding 95% confidence intervals (CIs), were obtained using multilevel logistic regression models. Furthermore, linear dose-response relationships were examined using fractional polynomial models.ResultsNo association of BC risk was observed with coffee consumption among smokers. However, after adjustment for age, gender, and smoking, the risk was significantly increased for never smokers (ever vs. never coffee consumers: ORmodel2 1.30, 95% CI 1.06-1.59; heavy (> 4 cups/day) coffee consumers vs. never coffee consumers: ORmodel2 1.52, 95% CI 1.18-1.97, p trend = 0.23). In addition, dose-response analyses, in both the overall population and among never smokers, also showed a significant increased BC risk for coffee consumption of more than four cups per day. Among smokers, a significant increased BC risk was shown only after consumption of more than six cups per day.ConclusionThis research suggests that positive associations between coffee consumption and BC among never smokers but not smokers
A Data Mining Approach to Investigate Food Groups related to Incidence of Bladder Cancer in the BLadder cancer Epidemiology and Nutritional Determinants International Study
At present, the analysis of diet and bladder cancer (BC) is mostly based on the intake of individual foods. The examination of food combinations provides a scope to deal with the complexity and unpredictability of the diet and aims to overcome the limitations of the study of nutrients and foods in isolation. This article aims to demonstrate the usability of supervised data mining methods to extract the food groups related to BC. In order to derive key food groups associated with BC risk, we applied the data mining technique C5.0 with 10-fold cross validation in the BLadder cancer Epidemiology and Nutritional Determinants (BLEND) study, including data from 18 case-control and 1 nested case-cohort study, compromising 8,320 BC cases out of 31,551 participants. Dietary data, on the 11 main food groups of the Eurocode 2 Core classification codebook and relevant non-diet data (i.e. sex, age and smoking status) were available. Primarily, five key food groups were extracted; in order of importance: beverages (non-milk); grains and grain products; vegetables and vegetable products; fats, oils and their products; meats and meat products were associated with BC risk. Since these food groups are corresponded with previously proposed BC related dietary factors, data mining seems to be a promising technique in the field of nutritional epidemiology and deserves further examination
Genome-wide Association Study of Bladder Cancer Reveals New Biological and Translational Insights
International audienceBackground: Genomic regions identified by genome-wide association studies (GWAS) for bladder cancer risk provide new insights into etiology. Objective: To identify new susceptibility variants for bladder cancer in a meta-analysis of new and existing genome-wide genotype data. Design, setting, and participants: Data from 32 studies that includes 13,790 bladder cancer cases and 343, 502 controls of European ancestry were used for meta-analysis. Outcome measurements and statistical analyses: Log-additive associations of genetic variants were assessed using logistic regression models. A fixed-effects model was used for meta-analysis of the results. Stratified analyses were conducted to evaluate effect modification by sex and smoking status. A polygenic risk score (PRS) was generated on the basis of known and novel susceptibility variants and tested for interaction with smoking. Results and limitations: Multiple novel bladder cancer susceptibility loci (6p.22.3, 7q36.3, 8q21.13, 9p21.3, 10q22.1, 19q13.33) as well as improved signals in three known regions (4p16.3, 5p15.33, 11p15.5) were identified, bringing the number of independent markers at genome-wide significance (p < 5 × 10−8) to 24. The 4p16.3 (FGFR3/TACC3) locus was associated with a stronger risk for women than for men (p-interaction = 0.002). Bladder cancer risk was increased by interactions between smoking status and genetic variants at 8p22 (NAT2; multiplicative p value for interaction [pM-I] = 0.004), 8q21.13 (PAG1; pM-I = 0.01), and 9p21.3 (LOC107987026/MTAP/CDKN2A; pM-I = 0.02). The PRS based on the 24 independent GWAS markers (odds ratio per standard deviation increase 1.49, 95% confidence interval 1.44–1.53), which also showed comparable results in two prospective cohorts (UK Biobank, PLCO trial), revealed an approximately fourfold difference in the lifetime risk of bladder cancer according to the PRS (e.g., 1st vs 10th decile) for both smokers and nonsmokers. Conclusions: We report novel loci associated with risk of bladder cancer that provide clues to its biological underpinnings. Using 24 independent markers, we constructed a PRS to stratify lifetime risk. The PRS combined with smoking history, and other established risk factors, has the potential to inform future screening efforts for bladder cancer. Patient summary: We identified new genetic markers that provide biological insights into the genetic causes of bladder cancer. These genetic risk factors combined with lifestyle risk factors, such as smoking, may inform future preventive and screening strategies for bladder cancer
Brazilian Flora 2020: Leveraging the power of a collaborative scientific network
International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo
BACKGROUND:
Cardiovascular (CV) disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Furthermore, patients with T2DM and acute coronary syndrome (ACS) have a particularly high risk of CV events. The glucagon-like peptide 1 receptor agonist, lixisenatide, improves glycemia, but its effects on CV events have not been thoroughly evaluated.
METHODS:
ELIXA (www.clinicaltrials.gov no. NCT01147250) is a randomized, double-blind, placebo-controlled, parallel-group, multicenter study of lixisenatide in patients with T2DM and a recent ACS event. The primary aim is to evaluate the effects of lixisenatide on CV morbidity and mortality in a population at high CV risk. The primary efficacy end point is a composite of time to CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. Data are systematically collected for safety outcomes, including hypoglycemia, pancreatitis, and malignancy.
RESULTS:
Enrollment began in July 2010 and ended in August 2013; 6,068 patients from 49 countries were randomized. Of these, 69% are men and 75% are white; at baseline, the mean ± SD age was 60.3 ± 9.7 years, body mass index was 30.2 ± 5.7 kg/m(2), and duration of T2DM was 9.3 ± 8.2 years. The qualifying ACS was a myocardial infarction in 83% and unstable angina in 17%. The study will continue until the positive adjudication of the protocol-specified number of primary CV events.
CONCLUSION:
ELIXA will be the first trial to report the safety and efficacy of a glucagon-like peptide 1 receptor agonist in people with T2DM and high CV event risk
Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting
ObjectiveTo explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts.MethodsWe performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI.ResultsThe mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 x 10(-8); and LINC00539/ZDHHC20, p = 5.82 x 10(-9). Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p([BI]) = 9.38 x 10(-25); p([SSBI]) = 5.23 x 10(-14) for hypertension), smoking (p([BI]) = 4.4 x 10(-10); p([SSBI]) = 1.2 x 10(-4)), diabetes (p([BI]) = 1.7 x 10(-8); p([SSBI]) = 2.8 x 10(-3)), previous cardiovascular disease (p([BI]) = 1.0 x 10(-18); p([SSBI]) = 2.3 x 10(-7)), stroke (p([BI]) = 3.9 x 10(-69); p([SSBI]) = 3.2 x 10(-24)), and MRI-defined white matter hyperintensity burden (p([BI]) = 1.43 x 10(-157); p([SSBI]) = 3.16 x 10(-106)), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p 0.0022), without indication of directional pleiotropy.ConclusionIn this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI