43 research outputs found
16 years of Ulysses Interstellar Dust Measurements in the Solar System: II. Fluctuations in the Dust Flow from the Data
The Ulysses spacecraft provided the first opportunity to identify and study
Interstellar Dust (ISD) in-situ in the Solar System between 1992 and 2007. Here
we present the first comprehensive analysis of the ISD component in the entire
Ulysses dust data set. We analysed several parameters of the ISD flow in a
time-resolved fashion: flux, flow direction, mass index, and flow width. The
general picture is in agreement with a time-dependent focussing/defocussing of
the charged dust particles due to long-term variations of the solar magnetic
field throughout a solar magnetic cycle of 22 years. In addition, we confirm a
shift in dust direction of in 2005, along with a
steep, size-dependent increase in flux by a factor of 4 within 8 months. To
date, this is difficult to interpret and has to be examined in more detail by
new dynamical simulations. This work is part of a series of three papers. This
paper concentrates on the time-dependent flux and direction of the ISD. In a
companion paper (Kr\"uger et al., 2015) we analyse the overall mass
distribution of the ISD measured by Ulysses, and a third paper discusses the
results of modelling the flow of the ISD as seen by Ulysses (Sterken et al.,
2015).Comment: 41 pages, 10 figures, 5 table
Heliospheric modulation of the interstellar dust flow on to Earth
Aims. Based on measurements by the Ulysses spacecraft and high-resolution
modelling of the motion of interstellar dust (ISD) through the heliosphere we
predict the ISD flow in the inner planetary system and on to the Earth. This is
the third paper in a series of three about the flow and filtering of the ISD.
Methods. Micrometer- and sub-micrometer-sized dust particles are subject to
solar gravity and radiation pressure as well as to interactions with the
interplanetary magnetic field that result in a complex size-dependent flow
pattern of ISD in the planetary system. With high-resolution dynamical
modelling we study the time-resolved flux and mass distribution of ISD and the
requirements for detection of ISD near the Earth.
Results. Along the Earth orbit the density, speed, and flow direction of ISD
depend strongly on the Earth's position and the size of the interstellar
grains. A broad maximum of the ISD flux (2x10^{-4}/m^2/s of particles with
radii >~0.3\mu m) occurs in March when the Earth moves against the ISD flow.
During this time period the relative speed with respect to the Earth is highest
(~60 km/s), whereas in September when the Earth moves with the ISD flow, both
the flux and the speed are lowest (<~10 km/s). The mean ISD mass flow on to the
Earth is ~100 kg/year with the highest flux of ~3.5kg/day occurring for about 2
weeks close to the end of the year when the Earth passes near the narrow
gravitational focus region downstream from the Sun. The phase of the 22-year
solar wind cycle has a strong effect on the number density and flow of
sub-micrometer-sized ISD particles. During the years of maximum electromagnetic
focussing (year 2031 +/- 3) there is a chance that ISD particles with sizes
even below 0.1\mu m can reach the Earth.
Conclusions. We demonstrate that ISD can be effectively detected, analysed,
and collected by space probes at 1 AU distance from the Sun.Comment: 17 pages, 17 figure
Coordinated Microanalyses of Seven Particles of Probable Interstellar Origin from the Stardust Mission
Stardust, a NASA Discovery-class mission, was the first sample-return mission to return solid samples from beyond the Moon. Stardust was effectively two missions in one spacecraft: it returned the first materials from a known primitive solar system body, the Jupiter-family comet Wild 2; Stardust also returned a collector that was exposed to the contemporary interstellar dust stream for 200 days during the interplanetary cruise. Both collections present severe technical challenges in sample preparation and in analysis. By far the largest collection is the cometary one: approximately 300 micro g of material was returned from Wild 2, mostly consisting of approx. 1 ng particles embedded in aerogel or captured as residues in craters on aluminum foils. Because of their relatively large size, identification of the impacts of cometary particles in the collection media is straightforward. Reliable techniques have been developed for the extraction of these particles from aerogel. Coordinated analyses are also relatively straightforward, often beginning with synchrotron-based x-ray fluorescence (S-XRF), X-ray Absorption Near-Edge Spectoscopy (XANES) and x-ray diffraction (S-XRD) analyses of particles while still embedded in small extracted wedges of aerogel called ``keystones'', followed by ultramicrotomy and TEM, Scanning Transmission X-ray Microscopy (STXM) and ion microprobe analyses (e.g., Ogliore et al., 2010). Impacts in foils can be readily analyzed by SEM-EDX, and TEM analysis after FIB liftout sample preparation. In contrast, the interstellar dust collection is vastly more challenging. The sample size is approximately six orders of magnitude smaller in total mass. The largest particles are only a few pg in mass, of which there may be only approx.10 in the entire collection. The technical challenges, however, are matched by the scientific importance of the collection. We formed a consortium carry out the Stardust Interstellar Preliminary Examination (ISPE) to carry out an assessment of this collection, partly in order to characterize the collection in sufficient detail so that future investigators could make well-informed sample requests. The ISPE is the sixth PE on extraterrestrial collections carried out with NASA support. Some of the basic questions that we asked were: how many impacts are there in the collector, and what fraction of them have characteristics consistent with extraterrestrial materials? What is the elemental composition of the rock-forming elements? Is there crystalline material? Are there organics? Here we present coordinated microanalyses of particles captured in aerogel, using S-FTIR, S-XRF, STXM, S-XRD; and coordinated microanalyses of residues in aluminum foil, using SEMEDX, Auger spectroscopy, STEM, and ion microprobe. We discuss a novel approach that we employed for identification of tracks in aerogel, and new sample preparation techniques developed during the ISPE. We have identified seven particles - three in aerogel and four in foils - that are most consistent with an interstellar origin. The seven particles exhibit a large diversity in elemental composition. Dynamical evidence, supported supported by laboratory simulations of interstellar dust impacts in aerogel and foils, and numerical modeling of interstellar dust propagation in the heliosphere, suggests that at least some of the particles have high optical cross-section, perhaps due to an aggregate structure. However, the observations are most consistent with a variety of morphologie
Modeling the interstellar dust detections by DESTINY+ I: Instrumental constraints and detectability of organic compounds
The DESTINY+ spacecraft will be launched to the active asteroid (3200) Phaethon in 2025. The spacecraft will be equipped with the DESTINY+ Dust Analyzer (DDA) which will be a time-of-flight impact ionization mass spectrometer. In addition to the composition of impacting dust particles, the instrument will measure the particle mass, velocity vector, and surface charge. Here, we study the detection conditions of DDA for interstellar dust during the DESTINY+ mission. We use the interstellar dust module of the Interplanetary Meteoroid environment for EXploration model (IMEX Sterken et al., 2013; Strub et al., 2019) to simulate the flow of interstellar dust through the Solar System. Extending earlier work by Kr & uuml;ger et al. (2019b) we consider the entire DESTINY+ mission, i.e. the Earth-orbiting phase of the spacecraft during the initial approximately 1.5 years after launch, the nominal interplanetary mission phase up to the Phaethon flyby, and a four-years mission extension beyond the Phaethon flyby. The latter may include additional asteroid flybys. For predicting dust fluxes and fluences we take into account a technical constraint for DDA not to point closer than 90 degrees towards the Sun direction for health and safety reasons of the instrument and in order to avoid electrical noise generated by photoelectrons. For the Earth orbiting phase after launch of DESTINY+ our simulations predict that up to 28 interstellar particles will be detectable with DDA in 2026. In the following years the interplanetary magnetic field changes to a focussing configuration for small (less than or similar to 0.1 mu m) interstellar dust particles. This increases the total number of detectable particles to 50 during the interplanetary mission of DESTINY+ in 2027. In 2028 and 2029/30 approximately 160 and 190 particles will be detectable, respectively, followed by about 500 in 2030/31. We also make predictions for the detectability of organic compounds contained in the interstellar particles which is a strong function of the particle impact speed onto the detector. While organic compounds will be measurable only in a negligible number of particles during the Earth orbiting and the nominal interplanetary mission phases, a few 10s of interstellar particle detections with measurable organic compounds are predicted for the extended mission from 2028 to 2031
Final Reports of the Stardust ISPE: Seven Probable Interstellar Dust Particles
The Stardust spacecraft carried the first spaceborne collector specifically designed to capture and return a sample of contemporary interstellar dust to terrestrial laboratories for analysis [1]. The collector was exposed to the interstellar dust stream in two periods in 2000 and 2002 with a total exposure of approximately 1.8 10(exp 6) square meters sec. Approximately 85% of the collector consisted of aerogel, and the remainder consisted of Al foils. The Stardust Interstellar Preliminary Examination (ISPE) was a consortiumbased effort to characterize the collection in sufficient detail to enable future investigators to make informed sample requests. Among the questions to be answered were these: How many impacts are consistent in their characteristics with interstellar dust, with interplanetary dust, and with secondary ejecta from impacts on the spacecraft? Are the materials amorphous or crystalline? Are organics detectable? An additional goal of the ISPE was to develop or refine the techniques for preparation, analysis, and curation of these tiny samples, expected to be approximately 1 picogram or smaller, roughly three orders of magnitude smaller in mass than the samples in other small particle collections in NASA's collections - the cometary samples returned by Stardust, and the collection of Interplanetary Dust Particles collected in the stratosphere
Modelling DESTINY+ interplanetary and interstellar dust measurements en route to the active asteroid (3200) Phaethon
The JAXA/ISAS spacecraft DESTINY will be launched to the active asteroid
(3200) Phaethon in 2022. Among the proposed core payload is the DESTINY+ Dust
Analyzer (DDA) which is an upgrade of the Cosmic Dust Analyzer flown on the
Cassini spacecraft to Saturn (Srama et al. 2011). We use two up-to-date
computer models, the ESA Interplanetary Meteoroid Engineering Model (IMEM,
Dikarev et al. 2005), and the interstellar dust module of the Interplanetary
Meteoroid environment for EXploration model (IMEX; Sterken2013 et al., Strub et
al. 2019) to study the detection conditions and fluences of interplanetary and
interstellar dust with DDA. Our results show that a statistically significant
number of interplanetary and interstellar dust particles will be detectable
with DDA during the 4-years interplanetary cruise of DESTINY+. The particle
impact direction and speed can be used to descriminate between interstellar and
interplanetary particles and likely also to distinguish between cometary and
asteroidal particles.Comment: 40 pages, 18 Figures, accepted for Planetary and Space Scienc
A cosmic dust detection suite for the deep space Gateway
The decade of the 2020s promises to be when humanity returns to space beyond Earth orbit, with several nations trying to place astronauts on the Moon, before going further into deep space. As part of such a programme, NASA and partner organisations, propose to build a Deep Space Gateway in lunar orbit by the mid-2020s. This would be visited regularly and offer a platform for science as well as for human activity. Payloads that can be mounted externally on the Gateway offer the chance to, amongst other scientific goals, monitor and observe the dust flux in the vicinity of the Moon. This paper looks at relevant technologies to measure dust which will impact the exposed surface at high speed. Flux estimates and a model payload of detectors are described. It is predicted that the flux is sufficient to permit studies of cometary vs. asteroidal dust and their composition, and to sample interstellar dust streams. This may also be the last opportunity to measure the natural dust flux near the Moon before the current, relatively pristine environment, is contaminated by debris, as humanity’s interest in the Moon generates increased activity in that vicinity in coming decades
Synergies between interstellar dust and heliospheric science with an interstellar probe
We discuss the synergies between heliospheric and dust science, the open science questions, the technological endeavours, and programmatic aspects that are important to maintain or develop in the decade to come. In particular, we illustrate how we can use interstellar dust in the solar system as a tracer for the (dynamic) heliosphere properties, and emphasize the fairly unexplored, but potentially important science question of the role of cosmic dust in heliospheric and astrospheric physics. We show that an interstellar probe mission with a dedicated dust suite would bring unprecedented advances to interstellar dust research, and can also contribute – through measuring dust – to heliospheric science. This can, in particular, be done well if we work in synergy with other missions inside the solar system, thereby using multiple vantage points in space to measure the dust as it ‘rolls’ into the heliosphere. Such synergies between missions inside the solar system and far out are crucial for disentangling the spatially and temporally varying dust flow. Finally, we highlight the relevant instrumentation and its suitability for contributing to finding answers to the research questions
Planetary Exploration Horizon 2061 Report, Chapter 3: From science questions to Solar System exploration
This chapter of the Planetary Exploration Horizon 2061 Report reviews the way
the six key questions about planetary systems, from their origins to the way
they work and their habitability, identified in chapter 1, can be addressed by
means of solar system exploration, and how one can find partial answers to
these six questions by flying to the different provinces to the solar system:
terrestrial planets, giant planets, small bodies, and up to its interface with
the local interstellar medium. It derives from this analysis a synthetic
description of the most important space observations to be performed at the
different solar system objects by future planetary exploration missions. These
observation requirements illustrate the diversity of measurement techniques to
be used as well as the diversity of destinations where these observations must
be made. They constitute the base for the identification of the future
planetary missions we need to fly by 2061, which are described in chapter 4.
Q1- How well do we understand the diversity of planetary systems objects? Q2-
How well do we understand the diversity of planetary system architectures? Q3-
What are the origins and formation scenarios for planetary systems? Q4- How do
planetary systems work? Q5- Do planetary systems host potential habitats? Q6-
Where and how to search for life?Comment: 107 pages, 37 figures, Horizon 2061 is a science-driven, foresight
exercise, for future scientific investigation
Space Plasma Physics: A Review
Owing to the ever-present solar wind, our vast solar system is full of plasmas. The turbulent solar wind, together with sporadic solar eruptions, introduces various space plasma processes and phenomena in the solar atmosphere all the way to Earth’s ionosphere and atmosphere and outward to interact with the interstellar media to form the heliopause and termination shock. Remarkable progress has been made in space plasma physics in the last 65 years, mainly due to sophisticated in situ measurements of plasmas, plasma waves, neutral particles, energetic particles, and dust via space-borne satellite instrumentation. Additionally, high-technology ground-based instrumentation has led to new and greater knowledge of solar and auroral features. As a result, a new branch of space physics, i.e., space weather, has emerged since many of the space physics processes have a direct or indirect influence on humankind
