7 research outputs found

    Editorial for the Radiation Measurements/Physics Open Virtual Special Issue Radiation dosimetry: current challenges and future directions

    No full text
    Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.RST/Fundamental Aspects of Materials and Energ

    The quest for new thermoluminescence and optically stimulated luminescence materials: Needs, strategies and pitfalls

    No full text
    The quest for new materials for thermoluminescence (TL) and optically stimulated luminescence (OSL) dosimetry continues to be a central line of research in luminescence dosimetry, occupying many groups and investigators, and is the topic of many publications. Nevertheless, it has also been a research area with many pitfalls, slow advances in our understanding of the luminescence processes, and rare improvements over existing materials. Therefore, this paper reviews the status of the field with the goal of addressing some fundamental questions: Is there a need for new luminescence materials for TL/OSL dosimetry? Can these materials be designed and, if so, are there strategies or rules that can be followed? What are the common pitfalls and how can they be avoided? By discussing these questions, we hope to contribute to a more guided approach to the development of new luminescent materials for dosimetry applications.RST/Fundamental Aspects of Materials and Energ

    BiodosEPR-2006 consensus committee report on biodosimetric methods to evaluate radiation doses at long times after exposure

    Get PDF
    The requirements for biodosimetric techniques used at long times after exposure, i.e., 6 months to more than 50 years, are unique compared to the requirements for methods used for immediate dose estimation. In addition to the fundamental requirement that the assay measures a physical or biologic change that is proportional to the energy absorbed, the signal must be highly stable over time to enable reasonably precise determinations of the absorbed dose decades later. The primary uses of these biodosimetric methods have been to support long-term health risk (epidemiologic) studies or to support compensation (damage) claims. For these reasons, the methods must be capable of estimating individual doses, rather than group mean doses. Even when individual dose estimates can be obtained, inter-individual variability remains as one of the most difficult problems in using biodosimetry measurements to rigorously quantify individual exposures. Other important criteria for biodosimetry methods include obtaining samples with minimal invasiveness, low detection limits, and high precision. Cost and other practical limitations generally prohibit biodosimetry measurements on a large enough sample to replace analytical dose reconstruction in epidemiologic investigations. However, these measurements can be extremely valuable as a means to corroborate analytical or model-based dose estimates, to help reduce uncertainty in individual doses estimated by other methods and techniques, and to assess bias in dose reconstruction models. There has been extensive use of three biodosimetric techniques in irradiated populations: EPR (using tooth enamel), FISH (using blood lymphocytes), and GPA (also using blood); these methods have been supplemented with luminescent methods applied to building materials and artifacts. A large number of investigations have used biodosimetric methods many years after external and, to a lesser extent, internal exposure to reconstruct doses received from accidents, from occupational exposures, from environmental releases of radioactive materials, and from medical exposures. In most applications, the intent has been to either identify highly exposed persons or confirmed suspected exposures. Improvements in methodology, however, have led many investigators to attempt quantification of whole-body doses received, or in a few instances, to estimate organ doses. There will be a continued need for new and improved biodosimetric techniques not only to assist in future epidemiologic investigations but to help evaluate the long-term consequences following nuclear accidents or events of radiologic terrorism

    Integration of new biological and physical retrospective dosimetry methods into EU emergency response plans – joint RENEB and EURADOS inter-laboratory comparisons

    No full text
    corecore