127 research outputs found
Recommended from our members
High-Performance Integrated Window and Façade Solutions for California
The researchers developed a new generation of high-performance façade systems and supporting design and management tools to support industry in meeting California’s greenhouse gas reduction targets, reduce energy consumption, and enable an adaptable response to minimize real-time demands on the electricity grid. The project resulted in five outcomes: (1) The research team developed an R-5, 1-inch thick, triplepane, insulating glass unit with a novel low-conductance aluminum frame. This technology can help significantly reduce residential cooling and heating loads, particularly during the evening. (2) The team developed a prototype of a windowintegrated local ventilation and energy recovery device that provides clean, dry fresh air through the façade with minimal energy requirements. (3) A daylight-redirecting louver system was prototyped to redirect sunlight 15–40 feet from the window. Simulations estimated that lighting energy use could be reduced by 35–54 percent without glare. (4) A control system incorporating physics-based equations and a mathematical solver was prototyped and field tested to demonstrate feasibility. Simulations estimated that total electricity costs could be reduced by 9-28 percent on sunny summer days through adaptive control of operable shading and daylighting components and the thermostat compared to state-of-the-art automatic façade controls in commercial building perimeter zones. (5) Supporting models and tools needed by industry for technology R&D and market transformation activities were validated. Attaining California’s clean energy goals require making a fundamental shift from today’s ad-hoc assemblages of static components to turnkey, intelligent, responsive, integrated building façade systems. These systems offered significant reductions in energy use, peak demand, and operating cost in California
Recommended from our members
THE DAYLIGHTING SOLUTION
The topic of daylighting, particularly in commercial buildings, is discussed, including economic aspects, control of daylight, fenestration functions, data gathering, design tools and methods, and lighting controls
Responsive building envelope concepts in zero emission neighborhoods and smart cities - A roadmap to implementation
Designing a zero emission neighborhood (ZEN) from an energy point of view, has the benefit of distributing loads over time by creating a mosaic of buildings which individually may not have a zero emission balance, but reach it as an ensemble. Responsive building envelopes (RBEs) are expected to play an important role in the design of ZENs and future smart sustainable cities. RBEs are useful to optimize the balance between several energy flows at single- and multi building scale, as well as to actively manage both on-site renewable- and purchased energy in addition to improving user experience and indoor comfort by providing an interactive interface with the outdoors. This article provides a review of the potential and the requirements associated with using RBEs to manage complex interactions between buildings, clusters of buildings and utility grids. A six-step pathway for the implementation of RBEs in ZEN-like projects are proposed. The six steps are related to identifying; purpose of response, scale and interdependency, functionality, trigger and control, interactions and finally to identifying technical solutions. The proposed process emphasizes the importance of defining specific information such as the responsive goal hierarchies, the scale of the responses in relation to their purpose, and the importance of the aesthetic expression to foster positive user experience.publishedVersion© 2018 SINTEF Building and Infrastructure. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/)
Integration of Environmental Sensors with BIM: case studies using Arduino, Dynamo, and the Revit API
Recommended from our members
Advanced Interactive Facades - Critical Elements for Future GreenBuildings?
Building designers and owners have always been fascinated with the extensive use of glass in building envelopes. Today the highly glazed facade has almost become an iconic element for a 'green building' that provides daylighting and a visual connection with the natural environment. Even before the current interest in green buildings there was no shortage of highly glazed building designs. But many of these buildings either rejected sunlight, and some associated daylight and view with highly reflective glazings or used highly transmissive glass and encountered serious internal comfort problems that could only be overcome with large HVAC systems, resulting in significant energy, cost and environmental penalties. From the 1960's to the 1990's innovation in glazing made heat absorbing glass, reflective glass and double glazing commonplace, with an associated set of aesthetic features. In the last decade there has been a subtle shift from trying to optimize an ideal, static design solution using these glazings to making the facade responsive, interactive and even intelligent. More sophisticated design approaches and technologies have emerged using new high-performance glazing, improved shading and solar control systems, greater use of automated controls, and integration with other building systems. One relatively new architectural development is the double glass facade that offers a cavity that can provide improved acoustics, better solar control and enhanced ventilation. Taken to its ultimate development, an interactive facade should respond intelligently and reliably to the changing outdoor conditions and internal performance needs. It should exploit available natural energies for lighting, heating and ventilation, should be able to provide large energy savings compared to conventional technologies, and at the same time maintain optimal indoor visual and thermal comfort conditions. As photovoltaic costs decrease in the future, these onsite power systems will be integrated within the glass skin and these facades will become local, non-polluting energy suppliers to the building. The potential for facilitating sustainable building operations in the future by exploiting these concepts is therefore great. There is growing interest in highly glazed building facades, driven by a variety of architectural, aesthetic, business and environmental rationales. The environmental rationale appears plausible only if conventional glazing systems are replaced by a new generation of high performance, interactive, intelligent facade systems, that meet the comfort and performance needs of occupants while satisfying owner economic needs and broader societal environmental concerns. The challenge is that new technology, better systems integration using more capable design tools, and smarter building operation are all necessary to meet these goals. The opportunity is to create a new class of buildings that are both environmentally responsible at a regional or global level while providing the amenities and working environments that owners and occupants seek
The design and evaluation of three advanced daylighting systems: Light shelves, light pipes and skylights
We present results from the design and evaluation of three advanced daylighting systems: a light shelf, a light pipe, and a skylight. These systems use optical films and an optimized geometry to passively intercept and redirect sunlight further into the building. The objectives of these designs are to increase daylighting illuminance levels at distances of 4.6-9.l m (15-30 ft) from the window, and to improve the uniformity of the daylight distribution and the luminance gradient across the room under variable sun and sky conditions throughout the year. The designs were developed through a series of computer-assisted ray-tracing studies, photometric measurements, and observations using physical scale models. Comprehensive sets of laboratory measurements in combination with analytical routines were then used to simulate daylight performance for any solar position. Results show increased daylight levels and an improved luminance gradient throughout the year-indicating that lighting energy consumption and cooling energy due to lighting can be substantially reduced with improvements to visual comfort. Future development of the designs may further improve the daylighting performance of these systems.This research was funded by the California Institute for Energy Efficiency (CIEE), a research unit of the University of California. CIEE is a consortium of the CPUC, the CEC, and California utilities including LADWP, SCE, SCG, SMUD, and PG&E. Publication of research results does not imply CIEE endorsement of or agreement with these findings, nor that of any CIEE sponsor. Additional related support was provided by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies, Building Systems and Materials Division of the U.S. Department of Energy under Contract No. DEAC03-76SF00098
Excellent Insulation Vacuum Glazing for Low-Carbon Buildings:Fabrication, Modeling, and Evaluation
Vacuum glazing is highly regarded for its ability to transmit light while providing heat preservation, sound insulation, lightweight characteristics, and resistance to condensation. Scholars have made significant strides in the study of vacuum glazing through their notable efforts. This study systematically reviewed vacuum glazing and its composite structures, including material selection, fabrication techniques, research methods, and performance evaluation. This review initially presented fundamental techniques for preparing vacuum glazing, with a focus on edge seal and support pillar arrangements, and introduced common composite structures such as hybrid and tinted vacuum glazing. Furthermore, this review summarized the analytical, numerical, and experimental methodologies used to assess the thermal performance of vacuum glazing. This study also outlined heat transfer coefficients associated with various vacuum glazing structures, investigated the influence of different parameters on their heat transfer coefficients, and evaluated their potential for energy conservation across diverse climatic regions. Finally, the research delineated future trends in the advancement of vacuum glazing to provide guidance for both theoretical studies and practical applications in industry. This research serves as a valuable resource for both theoretical exploration and practical integration of vacuum glazing, facilitating its improvement and optimization to advance sustainable low-carbon building practices
Energy and Daylight Performance of Angular Selective Glazings
This paper presents the results of a study investigating the energy and daylight performance of anisotropic angular selective glazings. The DOE-2.1E energy simulation program was used to determine the annual cooling, lighting and total electricity use, and peak electric demand. RADIANCE, a lighting simulation program, was used to determine daylight illuminance levels and distribution. We simulated a prototypical commercial office building module located in Blythe, California. We chose three hypothetical conventional windows for comparison: a singlepane tinted window, a double-pane low-E window, and a double-pane spectrally selective window. Daylighting controls were used. No interior shades were modeled in order to isolate the energy effects of the angular selective glazing. Our results show that the energy performance of the prototype angular selective windows is about the same as conventional windows for a 9.14 m (30 ft) deep south-facing perimeter zone with a large-area window in the hot, sunny climate of Blythe. It is theoretically possible to tune the angular selectivity of the glazing to achieve annual cooling energy reductions of 18%, total electricity use reductions of 15%, and peak electric demand reductions of 11% when compared to a conventional glazing with the same solar-optical properties at normal incidence. Angular selective glazings can provide more uniformly distributed daylight, particularly in the area next to the window, which will result in a more visually comfortable work environment.This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098
Recommended from our members
Comparing Computer Run Time of Building Simulation Programs
This paper presents an approach to comparing computer run time of building simulation programs. The computing run time of a simulation program depends on several key factors, including the calculation algorithm and modeling capabilities of the program, the run period, the simulation time step, the complexity of the energy models, the run control settings, and the software and hardware configurations of the computer that is used to make the simulation runs. To demonstrate the approach, simulation runs are performed for several representative DOE-2.1E and EnergyPlus energy models. The computer run time of these energy models are then compared and analyzed
- …
