127 research outputs found

    Responsive building envelope concepts in zero emission neighborhoods and smart cities - A roadmap to implementation

    Get PDF
    Designing a zero emission neighborhood (ZEN) from an energy point of view, has the benefit of distributing loads over time by creating a mosaic of buildings which individually may not have a zero emission balance, but reach it as an ensemble. Responsive building envelopes (RBEs) are expected to play an important role in the design of ZENs and future smart sustainable cities. RBEs are useful to optimize the balance between several energy flows at single- and multi building scale, as well as to actively manage both on-site renewable- and purchased energy in addition to improving user experience and indoor comfort by providing an interactive interface with the outdoors. This article provides a review of the potential and the requirements associated with using RBEs to manage complex interactions between buildings, clusters of buildings and utility grids. A six-step pathway for the implementation of RBEs in ZEN-like projects are proposed. The six steps are related to identifying; purpose of response, scale and interdependency, functionality, trigger and control, interactions and finally to identifying technical solutions. The proposed process emphasizes the importance of defining specific information such as the responsive goal hierarchies, the scale of the responses in relation to their purpose, and the importance of the aesthetic expression to foster positive user experience.publishedVersion© 2018 SINTEF Building and Infrastructure. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/)

    The design and evaluation of three advanced daylighting systems: Light shelves, light pipes and skylights

    Get PDF
    We present results from the design and evaluation of three advanced daylighting systems: a light shelf, a light pipe, and a skylight. These systems use optical films and an optimized geometry to passively intercept and redirect sunlight further into the building. The objectives of these designs are to increase daylighting illuminance levels at distances of 4.6-9.l m (15-30 ft) from the window, and to improve the uniformity of the daylight distribution and the luminance gradient across the room under variable sun and sky conditions throughout the year. The designs were developed through a series of computer-assisted ray-tracing studies, photometric measurements, and observations using physical scale models. Comprehensive sets of laboratory measurements in combination with analytical routines were then used to simulate daylight performance for any solar position. Results show increased daylight levels and an improved luminance gradient throughout the year-indicating that lighting energy consumption and cooling energy due to lighting can be substantially reduced with improvements to visual comfort. Future development of the designs may further improve the daylighting performance of these systems.This research was funded by the California Institute for Energy Efficiency (CIEE), a research unit of the University of California. CIEE is a consortium of the CPUC, the CEC, and California utilities including LADWP, SCE, SCG, SMUD, and PG&E. Publication of research results does not imply CIEE endorsement of or agreement with these findings, nor that of any CIEE sponsor. Additional related support was provided by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies, Building Systems and Materials Division of the U.S. Department of Energy under Contract No. DEAC03-76SF00098

    Excellent Insulation Vacuum Glazing for Low-Carbon Buildings:Fabrication, Modeling, and Evaluation

    Get PDF
    Vacuum glazing is highly regarded for its ability to transmit light while providing heat preservation, sound insulation, lightweight characteristics, and resistance to condensation. Scholars have made significant strides in the study of vacuum glazing through their notable efforts. This study systematically reviewed vacuum glazing and its composite structures, including material selection, fabrication techniques, research methods, and performance evaluation. This review initially presented fundamental techniques for preparing vacuum glazing, with a focus on edge seal and support pillar arrangements, and introduced common composite structures such as hybrid and tinted vacuum glazing. Furthermore, this review summarized the analytical, numerical, and experimental methodologies used to assess the thermal performance of vacuum glazing. This study also outlined heat transfer coefficients associated with various vacuum glazing structures, investigated the influence of different parameters on their heat transfer coefficients, and evaluated their potential for energy conservation across diverse climatic regions. Finally, the research delineated future trends in the advancement of vacuum glazing to provide guidance for both theoretical studies and practical applications in industry. This research serves as a valuable resource for both theoretical exploration and practical integration of vacuum glazing, facilitating its improvement and optimization to advance sustainable low-carbon building practices

    Energy and Daylight Performance of Angular Selective Glazings

    Get PDF
    This paper presents the results of a study investigating the energy and daylight performance of anisotropic angular selective glazings. The DOE-2.1E energy simulation program was used to determine the annual cooling, lighting and total electricity use, and peak electric demand. RADIANCE, a lighting simulation program, was used to determine daylight illuminance levels and distribution. We simulated a prototypical commercial office building module located in Blythe, California. We chose three hypothetical conventional windows for comparison: a singlepane tinted window, a double-pane low-E window, and a double-pane spectrally selective window. Daylighting controls were used. No interior shades were modeled in order to isolate the energy effects of the angular selective glazing. Our results show that the energy performance of the prototype angular selective windows is about the same as conventional windows for a 9.14 m (30 ft) deep south-facing perimeter zone with a large-area window in the hot, sunny climate of Blythe. It is theoretically possible to tune the angular selectivity of the glazing to achieve annual cooling energy reductions of 18%, total electricity use reductions of 15%, and peak electric demand reductions of 11% when compared to a conventional glazing with the same solar-optical properties at normal incidence. Angular selective glazings can provide more uniformly distributed daylight, particularly in the area next to the window, which will result in a more visually comfortable work environment.This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Systems of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098
    corecore