359 research outputs found
On Essentiality and the World Health Organization's Model List of Essential Medicines
BackgroundIn 1977 the World Health Organization created its first Model List of Essential Medicines—a list designed to aid countries in determining which medicines to prioritize on their National Essential Medicines Lists. In classifying drugs as “essential,” the World Health Organization has historically stressed drugs' ability to meet priority health needs of populations and cost.ObjectivesIn this paper we trace the fluctuations in the application of cost and priority status of disease as criteria for essential medicines throughout the reports published by the WHO Expert Committee on Selection and Use of Essential Medicines since 1977.MethodsWe analyzed essential medicines lists published on the World Health Organization website since 1977 for trends in criteria concerning cost and priority status of disease. Where, available, analyzed the World Health Organization Expert Committee analysis rationalizing why certain medicines were or were not added and were or were not removed.ResultsThe application of the criteria of cost and priority status of essential medicines has fluctuated dramatically over the years.ConclusionsThe definition of essential medicines has shifted and now necessitates a new consensus on normative definitions and criteria. A more standardized and transparent set of procedures for choosing essential medicines is required
Planetary Phase Variations of the 55 Cancri System
Characterization of the composition, surface properties, and atmospheric
conditions of exoplanets is a rapidly progressing field as the data to study
such aspects become more accessible. Bright targets, such as the multi-planet
55 Cancri system, allow an opportunity to achieve high signal-to-noise for the
detection of photometric phase variations to constrain the planetary albedos.
The recent discovery that that inner-most planet, 55 Cancri e, transits the
host star introduces new prospects for studying this system. Here we calculate
photometric phase curves at optical wavelengths for the system with varying
assumptions for the surface and atmospheric properties of 55 Cancri e. We show
that the large differences in geometric albedo allows one to distinguish
between various surface models, that the scattering phase function cannot be
constrained with foreseeable data, and that planet b will contribute
significantly to the phase variation depending upon the surface of planet e. We
discuss detection limits and how these models may be used with future
instrumentation to further characterize these planets and distinguish between
various assumptions regarding surface conditions.Comment: 7 pages, 3 figures, accepted for publication in Ap
Discovery and Validation of Kepler-452b: A 1.6-Re Super Earth Exoplanet in the Habitable Zone of a G2 Star
We report on the discovery and validation of Kepler-452b, a transiting planet
identified by a search through the 4 years of data collected by NASA's Kepler
Mission. This possibly rocky 1.63 R planet orbits
its G2 host star every 384.843 days, the longest orbital
period for a small (R < 2 R) transiting exoplanet to date. The
likelihood that this planet has a rocky composition lies between 49% and 62%.
The star has an effective temperature of 575785 K and a log g of
4.320.09. At a mean orbital separation of 1.046 AU,
this small planet is well within the optimistic habitable zone of its star
(recent Venus/early Mars), experiencing only 10% more flux than Earth receives
from the Sun today, and slightly outside the conservative habitable zone
(runaway greenhouse/maximum greenhouse). The star is slightly larger and older
than the Sun, with a present radius of 1.11 R and an
estimated age of 6 Gyr. Thus, Kepler-452b has likely always been in the
habitable zone and should remain there for another 3 Gyr.Comment: 19 pages, 16 figure
Modeling Kepler transit light curves as false positives: Rejection of blend scenarios for Kepler-9, and validation of Kepler-9d, a super-Earth-size planet in a multiple system
Light curves from the Kepler Mission contain valuable information on the
nature of the phenomena producing the transit-like signals. To assist in
exploring the possibility that they are due to an astrophysical false positive,
we describe a procedure (BLENDER) to model the photometry in terms of a "blend"
rather than a planet orbiting a star. A blend may consist of a background or
foreground eclipsing binary (or star-planet pair) whose eclipses are attenuated
by the light of the candidate and possibly other stars within the photometric
aperture. We apply BLENDER to the case of Kepler-9, a target harboring two
previously confirmed Saturn-size planets (Kepler-9b and Kepler-9c) showing
transit timing variations, and an additional shallower signal with a 1.59-day
period suggesting the presence of a super-Earth-size planet. Using BLENDER
together with constraints from other follow-up observations we are able to rule
out all blends for the two deeper signals, and provide independent validation
of their planetary nature. For the shallower signal we rule out a large
fraction of the false positives that might mimic the transits. The false alarm
rate for remaining blends depends in part (and inversely) on the unknown
frequency of small-size planets. Based on several realistic estimates of this
frequency we conclude with very high confidence that this small signal is due
to a super-Earth-size planet (Kepler-9d) in a multiple system, rather than a
false positive. The radius is determined to be 1.64 (+0.19/-0.14) R(Earth), and
current spectroscopic observations are as yet insufficient to establish its
mass.Comment: 20 pages in emulateapj format, including 8 tables and 16 figures. To
appear in ApJ, 1 January 2010. Accepted versio
The Absolute Magnitude of RRc Variables From Statistical Parallax
We present the first definitive measurement of the absolute magnitude of RR
Lyrae c-type variable stars (RRc) determined purely from statistical parallax.
We use a sample of 247 RRc selected from the All Sky Automated Survey (ASAS)
for which high-quality light curves, photometry and proper motions are
available. We obtain high-resolution echelle spectra for these objects to
determine radial velocities and abundances as part of the Carnegie RR Lyrae
Survey (CARRS). We find that M_(V,RRc) = 0.52 +/- 0.11 at a mean metallicity of
[Fe/H] = -1.59. This is to be compared with previous estimates for RRab stars
(M_(V,RRab) = 0.75 +/- 0.13 and the only direct measurement of an RRc absolute
magnitude (RZ Cephei, M_(V, RRc) = 0.27 +/- 0.17). We find the bulk velocity of
the halo to be (W_pi, W_theta, W_z) = (10.9,34.9,7.2) km/s in the radial,
rotational and vertical directions with dispersions (sigma_(W_pi),
sigma_(W_theta), sigma_(W_z)) = (154.7, 103.6, 93.8) km/s. For the disk, we
find (W_pi, W_theta, W_z) = (8.5, 213.2, -22.1) km/s with dispersions
(sigma_(W_pi), sigma_(W_theta), sigma_(W_z)) = (63.5, 49.6, 51.3) km/s.
Finally, we suggest that UCAC2 proper motion errors may be overestimated by
about 25%Comment: Submitted to ApJ. 11 pages including 6 figure
Planetary Candidates Observed by Kepler. VII. The First Fully Uniform Catalog Based on The Entire 48 Month Dataset (Q1-Q17 DR24)
We present the seventh Kepler planet candidate catalog, which is the first to
be based on the entire, uniformly processed, 48 month Kepler dataset. This is
the first fully automated catalog, employing robotic vetting procedures to
uniformly evaluate every periodic signal detected by the Q1-Q17 Data Release 24
(DR24) Kepler pipeline. While we prioritize uniform vetting over the absolute
correctness of individual objects, we find that our robotic vetting is overall
comparable to, and in most cases is superior to, the human vetting procedures
employed by past catalogs. This catalog is the first to utilize artificial
transit injection to evaluate the performance of our vetting procedures and
quantify potential biases, which are essential for accurate computation of
planetary occurrence rates. With respect to the cumulative Kepler Object of
Interest (KOI) catalog, we designate 1,478 new KOIs, of which 402 are
dispositioned as planet candidates (PCs). Also, 237 KOIs dispositioned as false
positives (FPs) in previous Kepler catalogs have their disposition changed to
PC and 118 PCs have their disposition changed to FP. This brings the total
number of known KOIs to 8,826 and PCs to 4,696. We compare the Q1-Q17 DR24 KOI
catalog to previous KOI catalogs, as well as ancillary Kepler catalogs, finding
good agreement between them. We highlight new PCs that are both potentially
rocky and potentially in the habitable zone of their host stars, many of which
orbit solar-type stars. This work represents significant progress in accurately
determining the fraction of Earth-size planets in the habitable zone of
Sun-like stars. The full catalog is publicly available at the NASA Exoplanet
Archive.Comment: Accepted to the Astrophysical Journal Supplement Series. 30 pages, 9
figures, 7 tables. We make the DR24 robovetter decision code publicly
available at http://github.com/JeffLCoughlin/robovetter, with input and
output examples provided using the same data as contained in the full paper's
table
- …