932 research outputs found

    Crystal frameworks, symmetry and affinely periodic flexes

    Get PDF
    Symmetry equations are obtained for the rigidity matrices associated with various forms of infinitesimal flexibility for an idealised bond-node crystal framework \C in \bR^d. These equations are used to derive symmetry-adapted Maxwell-Calladine counting formulae for periodic self-stresses and affinely periodic infinitesimal mechanisms. The symmetry equations also lead to general Fowler-Guest formulae connecting the character lists of subrepresentations of the crystallographic space and point groups which are associated with bonds, nodes, stresses, flexes and rigid motions. A new derivation is also given for the Borcea-Streinu rigidity matrix and the correspondence between its nullspace and the space of affinely periodic infinitesimal flexes.Comment: This preprint has some new diagrams and clarifications. A final version will appear in the New York Journal of Mathematic

    A characterisation of generically rigid frameworks on surfaces of revolution

    Get PDF
    A foundational theorem of Laman provides a counting characterisation of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterisation was obtained for frameworks in three dimensions whose vertices are constrained to concentric spheres or to concentric cylinders. Noting that the plane and the sphere have 3 independent locally tangential infinitesimal motions while the cylinder has 2, we obtain here a Laman-Henneberg theorem for frameworks on algebraic surfaces with a 1-dimensional space of tangential motions. Such surfaces include the torus, helicoids and surfaces of revolution. The relevant class of graphs are the (2,1)-tight graphs, in contrast to (2,3)-tightness for the plane/sphere and (2,2)-tightness for the cylinder. The proof uses a new characterisation of simple (2,1)-tight graphs and an inductive construction requiring generic rigidity preservation for 5 graph moves, including the two Henneberg moves, an edge joining move and various vertex surgery moves.Comment: 23 pages, 5 figures. Minor revisions - most importantly, the new version has a different titl
    • …
    corecore