18 research outputs found
PARAMETRIC ANCOVA AND THE RANK TRANSFORM ANCOVA WHEN THE DATA ARE CONDITIONALLY NON-NORMAL AND HETEROSCEDASTIC
ABSTRACT. Parametric analysis of covariance was compared to analysis of covariance with data transformed using ranks. Using a computer simulation approach, the two strategies were compared in terms of the proportion of Type I errors made and statistical power when the conditional distribution of errors was normal and homoscedastic, normal and heteroscedastic, non-normal and homoscedastic, and nonnormal and heteroscedastic. The results indicated that parametric ANCOVA was robust to violations of either normality or homoscedasticity. However, when both assumptions were violated, the observed a levels underestimated the nominal a level when sample sizes were small and a = .05. Rank ANCOVA led to a slightly liberal test of the hypothesis when the covariate was non-normal, the sample size was small, and the errors were heteroscedastic. Practical significant power differences favoring the rank ANCOVA procedures were observed with moderate sample sizes and a variety of conditional distributions. Data obtained from research studies based on the pretest-posttest randomized control group design 3. The posttest scores are independent of each other both between and within groups. 4. Within each group the distribution of posttest scores for each value of the covariate is normal (conditional normality). 5. Within each group the variance of the dependent variable is the same for each level of the covariate, and the conditional variances are equal for all groups (homoscedasticity). The robustness of analysis of covariance to violations of these assumptions has not received the same level of attention as the robustness of the Mest and 12
Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA, and ANCOVA analyses
Articles published in several prominent educational journals were examined to investigate the use of data-analysis tools by researchers in four research paradigms: between-subjects univariate designs, between-subjects multivariate designs, repeated measures designs, and covariance designs. In addition to examining specific details pertaining to the research design (e.g., sample size, group size equality/inequality) and methods employed for data analysis, we also catalogued whether: (a) validity assumptions were examined, (b) effect size indices were reported, (c) sample sizes were selected based on power considerations, and (d) appropriate textbooks and/or articles were cited to communicate the nature of the analyses that were performed. Our analyses imply that researchers rarely verify that validity assumptions are satisfied and accordingly typically use analyses that are nonrobust to assumption violations. In addition, researchers rarely report effect size statistics, nor do they routinely perform power analyses to determine sample size requirements. We offer many recommendations to rectify these shortcomings.Social Sciences and Humanities Research Counci
Affect Recognition using Psychophysiological Correlates in High Intensity VR Exergaming
User experience estimation of VR exergame players by recognising their affective state could enable us to personalise and optimise their experience. Affect recognition based on psychophysiological measurements has been successful for moderate intensity activities. High intensity VR exergames pose challenges as the effects of exercise and VR headsets interfere with those measurements. We present two experiments that investigate the use of different sensors for affect recognition in a VR exergame. The first experiment compares the impact of physical exertion and gamification on psychophysiological measurements during rest, conventional exercise, VR exergaming, and sedentary VR gaming. The second experiment compares underwhelming, overwhelming and optimal VR exergaming scenarios. We identify gaze fixations, eye blinks, pupil diameter and skin conductivity as psychophysiological measures suitable for affect recognition in VR exergaming and analyse their utility in determining affective valence and arousal. Our findings provide guidelines for researchers of affective VR exergames.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665992 </p
Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates
The foreign body response is an immune-mediated reaction that can lead to the failure of implanted medical devices and discomfort for the recipient. There is a critical need for biomaterials that overcome this key challenge in the development of medical devices. Here we use a combinatorial approach for covalent chemical modification to generate a large library of variants of one of the most widely used hydrogel biomaterials, alginate. We evaluated the materials in vivo and identified three triazole-containing analogs that substantially reduce foreign body reactions in both rodents and, for at least 6 months, in non-human primates. The distribution of the triazole modification creates a unique hydrogel surface that inhibits recognition by macrophages and fibrous deposition. In addition to the utility of the compounds reported here, our approach may enable the discovery of other materials that mitigate the foreign body response.Leona M. and Harry B. Helmsley Charitable Trust (3-SRA-2014-285-M-R)United States. National Institutes of Health (EB000244)United States. National Institutes of Health (EB000351)United States. National Institutes of Health (DE013023)United States. National Institutes of Health (CA151884)United States. National Institutes of Health (P41EB015871-27)National Cancer Institute (U.S.) (P30-CA14051
Recombinant Lloviu virus as a tool to study viral replication and host responses
Next generation sequencing has revealed the presence of numerous RNA viruses in animal reservoir hosts, including many closely related to known human pathogens. Despite their zoonotic potential, most of these viruses remain understudied due to not yet being cultured. While reverse genetic systems can facilitate virus rescue, this is often hindered by missing viral genome ends. A prime example is Lloviu virus (LLOV), an uncultured filovirus that is closely related to the highly pathogenic Ebola virus. Using minigenome systems, we complemented the missing LLOV genomic ends and identified cis-acting elements required for LLOV replication that were lacking in the published sequence. We leveraged these data to generate recombinant full-length LLOV clones and rescue infectious virus. Similar to other filoviruses, recombinant LLOV (rLLOV) forms filamentous virions and induces the formation of characteristic inclusions in the cytoplasm of the infected cells, as shown by electron microscopy. Known target cells of Ebola virus, including macrophages and hepatocytes, are permissive to rLLOV infection, suggesting that humans could be potential hosts. However, inflammatory responses in human macrophages, a hallmark of Ebola virus disease, are not induced by rLLOV. Additional tropism testing identified pneumocytes as capable of robust rLLOV and Ebola virus infection. We also used rLLOV to test antivirals targeting multiple facets of the replication cycle. Rescue of uncultured viruses of pathogenic concern represents a valuable tool in our arsenal for pandemic preparedness
Low-Input, High-Resolution 5′ Terminal Filovirus RNA Sequencing with ViBE-Seq
Although next-generation sequencing (NGS) has been instrumental in determining the genomic sequences of emerging RNA viruses, de novo sequence determination often lacks sufficient coverage of the 5′ and 3′ ends of the viral genomes. Since the genome ends of RNA viruses contain the transcription and genome replication promoters that are essential for viral propagation, a lack of terminal sequence information hinders the efforts to study the replication and transcription mechanisms of emerging and re-emerging viruses. To circumvent this, we have developed a novel method termed ViBE-Seq (Viral Bona Fide End Sequencing) for the high-resolution sequencing of filoviral genome ends using a simple yet robust protocol with high fidelity. This technique allows for sequence determination of the 5′ end of viral RNA genomes and mRNAs with as little as 50 ng of total RNA. Using the Ebola virus and Marburg virus as prototypes for highly pathogenic, re-emerging viruses, we show that ViBE-Seq is a reliable technique for rapid and accurate 5′ end sequencing of filovirus RNA sourced from virions, infected cells, and tissue obtained from infected animals. We also show that ViBE-Seq can be used to determine whether distinct reverse transcriptases have terminal deoxynucleotidyl transferase activity. Overall, ViBE-Seq will facilitate the access to complete sequences of emerging viruses