92 research outputs found
Collapse models with non-white noises
We set up a general formalism for models of spontaneous wave function
collapse with dynamics represented by a stochastic differential equation driven
by general Gaussian noises, not necessarily white in time. In particular, we
show that the non-Schrodinger terms of the equation induce the collapse of the
wave function to one of the common eigenstates of the collapsing operators, and
that the collapse occurs with the correct quantum probabilities. We also
develop a perturbation expansion of the solution of the equation with respect
to the parameter which sets the strength of the collapse process; such an
approximation allows one to compute the leading order terms for the deviations
of the predictions of collapse models with respect to those of standard quantum
mechanics. This analysis shows that to leading order, the ``imaginary'' noise
trick can be used for non-white Gaussian noise.Comment: Latex, 20 pages;references added and minor revisions; published as J.
Phys. A: Math. Theor. {\bf 40} (2007) 15083-1509
- …