4,169 research outputs found
MDP Optimal Control under Temporal Logic Constraints
In this paper, we develop a method to automatically generate a control policy
for a dynamical system modeled as a Markov Decision Process (MDP). The control
specification is given as a Linear Temporal Logic (LTL) formula over a set of
propositions defined on the states of the MDP. We synthesize a control policy
such that the MDP satisfies the given specification almost surely, if such a
policy exists. In addition, we designate an "optimizing proposition" to be
repeatedly satisfied, and we formulate a novel optimization criterion in terms
of minimizing the expected cost in between satisfactions of this proposition.
We propose a sufficient condition for a policy to be optimal, and develop a
dynamic programming algorithm that synthesizes a policy that is optimal under
some conditions, and sub-optimal otherwise. This problem is motivated by
robotic applications requiring persistent tasks, such as environmental
monitoring or data gathering, to be performed.Comment: Technical report accompanying the CDC2011 submissio
LTL Control in Uncertain Environments with Probabilistic Satisfaction Guarantees
We present a method to generate a robot control strategy that maximizes the
probability to accomplish a task. The task is given as a Linear Temporal Logic
(LTL) formula over a set of properties that can be satisfied at the regions of
a partitioned environment. We assume that the probabilities with which the
properties are satisfied at the regions are known, and the robot can determine
the truth value of a proposition only at the current region. Motivated by
several results on partitioned-based abstractions, we assume that the motion is
performed on a graph. To account for noisy sensors and actuators, we assume
that a control action enables several transitions with known probabilities. We
show that this problem can be reduced to the problem of generating a control
policy for a Markov Decision Process (MDP) such that the probability of
satisfying an LTL formula over its states is maximized. We provide a complete
solution for the latter problem that builds on existing results from
probabilistic model checking. We include an illustrative case study.Comment: Technical Report accompanying IFAC 201
The unreliability of inflation indicators
Analysts seeking evidence of rising inflation often focus on the movements of a single indicator_an increase in the price of gold, for example, or a decline in the unemployment rate. But simple statistical tests reveal that such indicators, used in isolation, have very limited predictive power.Inflation (Finance) ; Economic indicators ; Forecasting
Modeling The Intensity Function Of Point Process Via Recurrent Neural Networks
Event sequence, asynchronously generated with random timestamp, is ubiquitous
among applications. The precise and arbitrary timestamp can carry important
clues about the underlying dynamics, and has lent the event data fundamentally
different from the time-series whereby series is indexed with fixed and equal
time interval. One expressive mathematical tool for modeling event is point
process. The intensity functions of many point processes involve two
components: the background and the effect by the history. Due to its inherent
spontaneousness, the background can be treated as a time series while the other
need to handle the history events. In this paper, we model the background by a
Recurrent Neural Network (RNN) with its units aligned with time series indexes
while the history effect is modeled by another RNN whose units are aligned with
asynchronous events to capture the long-range dynamics. The whole model with
event type and timestamp prediction output layers can be trained end-to-end.
Our approach takes an RNN perspective to point process, and models its
background and history effect. For utility, our method allows a black-box
treatment for modeling the intensity which is often a pre-defined parametric
form in point processes. Meanwhile end-to-end training opens the venue for
reusing existing rich techniques in deep network for point process modeling. We
apply our model to the predictive maintenance problem using a log dataset by
more than 1000 ATMs from a global bank headquartered in North America.Comment: Accepted at Thirty-First AAAI Conference on Artificial Intelligence
(AAAI17
Doping driven structural distortion in the bilayer iridate (SrLa)IrO
Neutron single crystal diffraction and rotational anisotropy optical second
harmonic generation data are presented resolving the nature of the structural
distortion realized in electron-doped (SrLa)IrO with
and . Once electrons are introduced into the bilayer
spin-orbit assisted Mott insulator SrIrO, previous studies have
identified the appearance of a low temperature structural distortion and have
suggested the presence of a competing electronic instability in the phase
diagram of this material. Our measurements resolve a lowering of the structural
symmetry from monoclinic to monoclinic and the creation of two
unique Ir sites within the chemical unit cell as the lattice distorts below a
critical temperature . Details regarding the modifications to oxygen
octahedral rotations and tilting through the transition are discussed as well
as the evolution of the low temperature distorted lattice as a function of
carrier substitution.Comment: 8 pages, 4 figure
Optimality and robustness in multi-robot path planning with temporal logic constraints
In this paper we present a method for automatically generating optimal robot paths satisfying high-level mission specifications. The motion of the robot in the environment is modeled as a weighted transition system. The mission is specified by an arbitrary linear temporal-logic (LTL) formula over propositions satisfied at the regions of a partitioned environment. The mission specification contains an optimizing proposition, which must be repeatedly satisfied. The cost function that we seek to minimize is the maximum time between satisfying instances of the optimizing proposition. For every environment model, and for every formula, our method computes a robot path that minimizes the cost function. The problem is motivated by applications in robotic monitoring and data-gathering. In this setting, the optimizing proposition is satisfied at all locations where data can be uploaded, and the LTL formula specifies a complex data-collection mission. Our method utilizes Büchi automata to produce an automaton (which can be thought of as a graph) whose runs satisfy the temporal-logic specification. We then present a graph algorithm that computes a run corresponding to the optimal robot path. We present an implementation for a robot performing data collection in a road-network platform.This work was supported in part by the Office of Naval Research (grant number MURI N00014-09-1051), Army Research Office (grant number W911NF-09-1-0088), Air Force Office of Scientific Research (grant number YIP FA9550-09-1-020), National Science Foundation (grant number CNS-0834260), Singapore-MIT Alliance for Research and Technology (SMART) Future of Urban Mobility Project and by Natural Sciences and Engineering Research Council of Canada. (MURI N00014-09-1051 - Office of Naval Research; W911NF-09-1-0088 - Army Research Office; YIP FA9550-09-1-020 - Air Force Office of Scientific Research; CNS-0834260 - National Science Foundation; Singapore-MIT Alliance for Research and Technology (SMART); Natural Sciences and Engineering Research Council of Canada
- …