4,372 research outputs found
CRISPR/Cas9-Mediated Phage Resistance Is Not Impeded by the DNA Modifications of Phage T4
Bacteria rely on two known DNA-level defenses against their bacteriophage predators: restriction-modification and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) systems. Certain phages have evolved countermeasures that are known to block endonucleases. For example, phage T4 not only adds hydroxymethyl groups to all of its cytosines, but also glucosylates them, a strategy that defeats almost all restriction enzymes. We sought to determine whether these DNA modifications can similarly impede CRISPR-based defenses. In a bioinformatics search, we found naturally occurring CRISPR spacers that potentially target phages known to modify their DNA. Experimentally, we show that the Cas9 nuclease from the Type II CRISPR system of Streptococcus pyogenes can overcome a variety of DNA modifications in Escherichia coli. The levels of Cas9-mediated phage resistance to bacteriophage T4 and the mutant phage T4 gt, which contains hydroxymethylated but not glucosylated cytosines, were comparable to phages with unmodified cytosines, T7 and the T4-like phage RB49. Our results demonstrate that Cas9 is not impeded by N6-methyladenine, 5-methylcytosine, 5-hydroxymethylated cytosine, or glucosylated 5-hydroxymethylated cytosine
Complete Genome Sequences of T4-Like Bacteriophages RB3, RB5, RB6, RB7, RB9, RB10, RB27, RB33, RB55, RB59, and RB68
T4-like bacteriophages have been explored for phage therapy and are model organisms for phage genomics and evolution. Here, we describe the sequencing of 11 T4-like phages. We found a high nucleotide similarity among the T4, RB55, and RB59; RB32 and RB33; and RB3, RB5, RB6, RB7, RB9, and RB10 phages
Health and healthcare access among Zambia's female prisoners: a health systems analysis.
BackgroundResearch exploring the drivers of health outcomes of women who are in prison in low- and middle-income settings is largely absent. This study aimed to identify and examine the interaction between structural, organisational and relational factors influencing Zambian women prisoners' health and healthcare access.MethodsWe conducted in-depth interviews of 23 female prisoners across four prisons, as well as 21 prison officers and health care workers. The prisoners were selected in a multi-stage sampling design with a purposive selection of prisons followed by a random sampling of cells and of female inmates within cells. Largely inductive thematic analysis was guided by the concepts of dynamic interaction and emergent behaviour, drawn from the theory of complex adaptive systems.ResultsWe identified compounding and generally negative effects on health and access to healthcare from three factors: i) systemic health resource shortfalls, ii) an implicit prioritization of male prisoners' health needs, and iii) chronic and unchecked patterns of both officer- and inmate-led victimisation. Specifically, women's access to health services was shaped by the interactions between lack of in-house clinics, privileged male prisoner access to limited transport options, and weak responsiveness by female officers to prisoner requests for healthcare. Further intensifying these interactions were prisoners' differential wealth and access to family support, and appointments of senior 'special stage' prisoners which enabled chronic victimisation of less wealthy or less powerful individuals.ConclusionsThis systems-oriented analysis revealed how Zambian women's prisoners' health and access to healthcare is influenced by weak resourcing for prisoner health, administrative biases, and a prevailing organisational and inmate culture. Findings highlight the urgent need for investment in structural improvements in health service availability but also interventions to reform the organisational culture which shapes officers' understanding and responsiveness to women prisoners' health needs
Recommended from our members
Identification of candidate genes affecting Delta9-tetrahydrocannabinol biosynthesis in Cannabis sativa.
RNA isolated from the glands of a Delta(9)-tetrahydrocannabinolic acid (THCA)-producing strain of Cannabis sativa was used to generate a cDNA library containing over 100 000 expressed sequence tags (ESTs). Sequencing of over 2000 clones from the library resulted in the identification of over 1000 unigenes. Candidate genes for almost every step in the biochemical pathways leading from primary metabolites to THCA were identified. Quantitative PCR analysis suggested that many of the pathway genes are preferentially expressed in the glands. Hexanoyl-CoA, one of the metabolites required for THCA synthesis, could be made via either de novo fatty acids synthesis or via the breakdown of existing lipids. qPCR analysis supported the de novo pathway. Many of the ESTs encode transcription factors and two putative MYB genes were identified that were preferentially expressed in glands. Given the similarity of the Cannabis MYB genes to those in other species with known functions, these Cannabis MYBs may play roles in regulating gland development and THCA synthesis. Three candidates for the polyketide synthase (PKS) gene responsible for the first committed step in the pathway to THCA were characterized in more detail. One of these was identical to a previously reported chalcone synthase (CHS) and was found to have CHS activity. All three could use malonyl-CoA and hexanoyl-CoA as substrates, including the CHS, but reaction conditions were not identified that allowed for the production of olivetolic acid (the proposed product of the PKS activity needed for THCA synthesis). One of the PKS candidates was highly and specifically expressed in glands (relative to whole leaves) and, on the basis of these expression data, it is proposed to be the most likely PKS responsible for olivetolic acid synthesis in Cannabis glands
Recommended from our members
Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing
The Cas9 protein from the Streptococcus pyogenes CRISPR-Cas immune system has been adapted for both RNA-guided genome editing and gene regulation in a variety of organisms, but can mediate only a single activity at a time within any given cell. Here we characterize a set of fully orthogonal Cas9 proteins and demonstrate their ability to mediate simultaneous and independently targeted gene regulation and editing in bacteria and in human cells. We find that Cas9 orthologs display consistent patterns in their recognition of target sequences and identify a highly targetable protein from Neisseria meningitidis. Our results provide a basal set of orthogonal RNA-guided proteins for controlling biological systems and establish a general methodology for characterizing additional proteins and adapting them to eukaryotic cells
Spherical harmonic based noise rejection and neuronal sampling with multi-axis OPMs
In this study we explore the interference rejection and spatial sampling properties of multi-axis Optically Pumped Magnetometer (OPM) data. We use both vector spherical harmonics and eigenspectra to quantify how well an array can separate neuronal signal from environmental interference while adequately sampling the entire cortex. We found that triaxial OPMs have superb noise rejection properties allowing for very high orders of interference (L=6) to be accounted for while minimally affecting the neural space (2dB attenuation for a 60-sensor triaxial system). We show that at least 11th order (143 spatial degrees of freedom) irregular solid harmonics or 95 eigenvectors of the lead field are needed to model the neural space for OPM data (regardless of number of axes measured). This can be adequately sampled with 75-100 equidistant triaxial sensors (225-300 channels) or 200 equidistant radial channels. In other words, ordering the same number of channels in triaxial (rather than purely radial) configuration may give significant advantages not only in terms of external noise rejection but also by minimizing cost, weight and cross-talk
Recommended from our members
Sexual Dysfunction as a Marker of Cardiovascular Disease in Males With 50 or More Years of Type 1 Diabetes
OBJECTIVE Vascular dysfunction is a major contributor to diabetes complications. It is also the primary physiologic cause of erectile dysfunction and considered an independent predictor of cardiovascular disease (CVD) in males over age 40 years. A cohort of individuals with 50 or more years of type 1 diabetes, Joslin Medalists, have low rates of small but not large vessel complications. This study aims to identify the prevalence and longitudinal association of sexual dysfunction (SD) with CVD in Joslin Medalists. RESEARCH DESIGN AND METHODS Description and association of self-assessment of SD in males of the Medalist cohort by self-reported sexual problems with CVD. SD is validated through the use of the abbreviated International Index of Erectile Dysfunction (IIEF). RESULTS Of 301 males in the Medalist Study, 69.8% reported a history of SD. Unadjusted risk factors included elevated glycated hemoglobin (HbA1c) (P = 0.02), elevated BMI (P = 0.03), higher total cholesterol (P = 0.02), lower HDL (P 0.05) with SD. Current report of SD (IIEF score ≤17) in a subset of Medalists was significantly correlated with self-reported longitudinal SD. CONCLUSIONS SD in those with extreme-duration type 1 diabetes is independently associated with CVD, representing a large-vessel pattern. The findings suggest that SD may predict CVD in those with type 1 diabetes of long duration. These individuals have also been found to be relatively free of microvascular complications
Hepatic effects of tartrazine (E 102) after systemic exposure are independent of oestrogen receptor interactions in the mouse
Tartrazine is a food colour that activates the transcriptional function of the human oestrogen receptor alpha in an in vitro cell model. Since oestrogens are cholestatic, we hypothesised tartrazine will cause periportal injury to the liver in vivo. To test this hypothesis, tartrazine was initially administered systemically to mice resulting in a periportal recruitment of inflammatory cells, increased serum alkaline phosphatase activity and mild periportal fibrosis. To determine whether an oestrogenic effect may be a key event in this response, tartrazine, sulphonated metabolites and a food additive contaminant were screened for their ability to interact with murine oestrogen receptors. In all cases, there were no interactions as agonists or antagonists and further, no oestrogenicity was observed with tartrazine in an in vivo uterine growth assay. To examine the relevance of the hepatic effects of tartrazine to its use as a food additive, tartrazine was orally administered to transgenic NF-κB-Luc mice. Pre- and concurrent oral treatment with alcohol was incorporated given its potential to promote gut permeability and hepatic inflammation. Tartrazine alone induced NF- κB activities in the colon and liver but there was no periportal recruitment of inflammatory cells or fibrosis. Tartrazine, its sulphonated metabolites and the contaminant inhibited sulphotransferase activities in murine hepatic S9 extracts. Given the role of sulfotransferases in bile acid excretion, the initiating event giving rise to periportal inflammation and subsequent hepatic pathology through systemic tartrazine exposure is therefore potentially associated an inhibition of bile acid sulphation and excretion and not on oestrogen receptor-mediated transcriptional function. However, these effects were restricted to systemic exposures to tartrazine and did not occur to any significant effect after oral exposure
- …