3,371 research outputs found

    Would Functional Agricultural Foods Improve Human Health?

    Get PDF
    Concern over diet-health relationships has moved to the forefront of public health concerns in the UK and much of the developed world. It has been estimated, for example, that obesity costs the UK National Health Service up to £6b per year (Rayner and Scarborough, 2005), but if all consumers were to follow recommended healthy eating guidelines there would be major implications for food consumption, land use and international trade (Srinivasan et al, 2006). This is unlikely to happen, at least in the short term, but it is realistic to anticipate some dietary adjustment toward the recommendations, resulting in an improvement in diet quality (Mazzocchi et al, 2007). Although consumers are reluctant to make major changes to their diets, they may be prepared to substitute existing foods for healthier alternatives. Three of the most prominent nutritional recommendations are to consume more fruit and vegetables, which contain phytochemicals beneficial to health, reduce consumption of saturated fatty acids (SFA) and increase intake of long-chain n-3 fatty acids (FA). In the first case, consumption of fruit and vegetables has been stable at around three 80 g portions per person per day according to the Health Survey for England. It is estimated that 42,200 deaths per year could be avoided in England and 411,000 Quality Adjusted Life Years (QALYs) could be saved if fruit and vegetable consumption were increased to the recommended 5 portions per day (Ofcom 2006). As well as continuing to encourage people to eat more, it could be desirable to ‘intensify’ the beneficial phytochemical content of existing fruit and vegetables.Agribusiness, Agricultural and Food Policy, Farm Management, Food Consumption/Nutrition/Food Safety, Industrial Organization,

    Magnetic field sensors using 13-spin cat states

    Full text link
    Measurement devices could benefit from entangled correlations to yield a measurement sensitivity approaching the physical Heisenberg limit. Building upon previous magnetometric work using pseudo-entangled spin states in solution-state NMR, we present two conceptual advancements to better prepare and interpret the pseudo-entanglement resource as well as the use of a 13-spin cat state to measure the local magnetic field with a sensitivity beyond the standard quantum limit.Comment: 6 pages, 5 figures; v2: corrected figure 3, expanded conclusion, simplified explanation of equation 2; v3: accepted versio

    Review of Ground Systems Development and Operations (GSDO) Tools for Verifying Command and Control Software

    Get PDF
    The Exploration Systems Development (ESD) Standing Review Board (SRB) requested the NASA Engineering and Safety Center (NESC) conduct an independent review of the plan developed by Ground Systems Development and Operations (GSDO) for identifying models and emulators to create a tool(s) to verify their command and control software. The NESC was requested to identify any issues or weaknesses in the GSDO plan. This document contains the outcome of the NESC review

    Disorder controlled sound speed and thermal conductivity of hybrid metalcone films

    Full text link
    The multifaceted applications of polymers are often limited by their thermal conductivity. Therefore, understanding the mechanisms of thermal transport in polymers is of vital interest. Here, we leverage molecular layer deposition to grow three types of hybrid metalcone (i.e., alucone, zincone, and tincone) films and study their thermal and acoustic properties. The thermal conductivity of the hybrid polymer films ranges from 0.43 to 1.14 W/mK. Using kinetic theory, we trace the origin of thermal conductivity difference to sound speed change, which is dictated by the structural disorder within the films. Changing the disorder has negligible impacts on volumetric heat capacity and vibrational lifetimes. Our findings provide means to improve the thermal conductivity of organic, hybrid, and inorganic polymer films

    Simulation of a Miniature, Low-Power Time-of-Flight Mass Spectrometer for In Situ Analysis of Planetary Atmospheres

    Get PDF
    We are implementing nano- and micro-technologies to develop a miniaturized electron impact ionization mass spectrometer for planetary science. Microfabrication technology is used to fabricate the ion and electron optics, and a carbon nanotube (CNT) cathode is used to generate the ionizing electron beam. Future NASA planetary science missions demand miniaturized, low power mass spectrometers that exhibit high resolution and sensitivity to search for evidence of past and present habitability on the surface and in the atmosphere of priority targets such as Mars, Titan, Enceladus, Venus, Europa, and short-period comets. Toward this objective, we are developing a miniature, high resolution reflectron time-of-flight mass spectrometer (Mini TOF-MS) that features a low-power CNT field emission electron impact ionization source and microfabricated ion optics and reflectron mass analyzer in a parallel-plate geometry that is scalable. Charged particle electrodynamic modeling (SIMION 8.0.4) is employed to guide the iterative design of electron and ion optic components and to characterize the overall performance of the Mini TOF-MS device via simulation. Miniature (less than 1000 cubic centimeters) TOF-MS designs (ion source, mass analyzer, detector only) demonstrate simulated mass resolutions greater than 600 at sensitivity levels on the order of 10(exp -3) cps/molecule N2/cc while consuming 1.3 W of power and are comparable to current spaceflight mass spectrometers. Higher performance designs have also been simulated and indicate mass resolutions approximately 1000, though at the expense of sensitivity and instrument volume

    Somatic mutations in facial skin from countries of contrasting skin cancer risk

    Get PDF
    The incidence of keratinocyte cancer (basal cell and squamous cell carcinomas of the skin) is 17-fold lower in Singapore than the UK1-3, despite Singapore receiving 2-3 times more ultraviolet (UV) radiation4,5. Aging skin contains somatic mutant clones from which such cancers develop6,7. We hypothesized that differences in keratinocyte cancer incidence may be reflected in the normal skin mutational landscape. Here we show that, compared to Singapore, aging facial skin from populations in the UK has a fourfold greater mutational burden, a predominant UV mutational signature, increased copy number aberrations and increased mutant TP53 selection. These features are shared by keratinocyte cancers from high-incidence and low-incidence populations8-13. In Singaporean skin, most mutations result from cell-intrinsic processes; mutant NOTCH1 and NOTCH2 are more strongly selected than in the UK. Aging skin in a high-incidence country has multiple features convergent with cancer that are not found in a low-risk country. These differences may reflect germline variation in UV-protective genes

    Acute Sleep Restriction Has Differential Effects on Components of Attention

    Get PDF
    Inadequate nightly sleep duration can impair daytime functioning, including interfering with attentional and other cognitive processes. Current models posit that attention is a complex function regulated by several separate, but interacting, neural systems responsible for vigilance, orienting, and executive control. However, it is not clear to what extent each of these underlying component processes is affected by sleep loss. The purpose of this study was to evaluate the effects of acute sleep restriction on these attentional components using the Dalhousie Computerized Attention Battery (DalCAB). DalCAB tasks were administered to healthy women (aged 19–25 years) on two consecutive mornings: once after a night with 9 h time in bed (TIB), and once again after either another night with 9 h TIB (control condition, n = 19) or after a night with 3 h TIB (sleep restriction condition, n = 20). Self-ratings of sleepiness and mood were also obtained following each sleep condition. Participants showed increases in self-reported sleepiness and fatigue after the second night only in the sleep restriction group. Sleep restriction primarily affected processing speed on tasks measuring vigilance; however, performance deficits were also observed on some measures of executive function (e.g., go/no-go task, flanker task, working memory). Tasks assessing orienting of attention were largely unaffected. These results indicate that acute sleep restriction has differential effects on distinct components of attention, which should be considered in modeling the impacts of sleep loss on the underlying attentional networks

    The uptake of soluble and nanoparticulate imaging isotope in model liver tumours after intra-venous and intra-arterial administration

    No full text
    Delivery of chemotherapeutic drugs to tumours by reformulation as nanoparticles has often been proposed as a means of facilitating increased selective uptake, exploiting the increased permeability of the tumour vasculature. However realisation of this improvement in drug delivery in cancer patients has met with limited success. We have compared tumour uptake of soluble Tc99m-pertechnetate and a colloid of nanoparticles with a Tc99m core, using both intra-venous and intra-arterial routes of administration in a rabbit liver VX2 tumour model. The radiolabelled nanoparticles were tested both in untreated and cationised form. The results from this tumour model in an internal organ show a marked advantage in intra-arterial administration over the intra-venous route, even for the soluble isotope. Tumour accumulation of nanoparticles from arterial administration was augmented by cationisation of the nanoparticle surface with histone proteins, which consistently facilitated selective accumulation within microvessels at the periphery of tumours.Sources of support for this research: Sirtex Medical Ltd, Sydney Australia

    FilmArray, an Automated Nested Multiplex PCR System for Multi-Pathogen Detection: Development and Application to Respiratory Tract Infection

    Get PDF
    The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the “FilmArray”, which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon
    corecore