13 research outputs found
Lateral membrane organization as target of an antimicrobial peptidomimetic compound
Antimicrobial resistance is one of the leading concerns in medical care. Here we study the mechanism of action of an antimicrobial cationic tripeptide, AMC-109, by combining high speed-atomic force microscopy, molecular dynamics, fluorescence assays, and lipidomic analysis. We show that AMC-109 activity on negatively charged membranes derived from Staphylococcus aureus consists of two crucial steps. First, AMC-109 self-assembles into stable aggregates consisting of a hydrophobic core and a cationic surface, with specificity for negatively charged membranes. Second, upon incorporation into the membrane, individual peptides insert into the outer monolayer, affecting lateral membrane organization and dissolving membrane nanodomains, without forming pores. We propose that membrane domain dissolution triggered by AMC-109 may affect crucial functions such as protein sorting and cell wall synthesis. Our results indicate that the AMC-109 mode of action resembles that of the disinfectant benzalkonium chloride (BAK), but with enhanced selectivity for bacterial membranes.</p
The prodromus to a dissertation concerning solids naturally contained within solids : laying a foundation for the rendering a rational accompt both of the frame and the several changes of the masse of the earth, as also of the various productions in the same
by Nicolaus Steno / english'd by H. O.Uebersetzung von: De solido intra solidum naturaliter contento dissertationis prodromusErmittelter Name des Uebersetzers: Henry OldenburgGefaltete Kupfertafel fehlt; durch Xerokopie ersetz
Nicolai Stenonis De solido intra solidum naturaliter contento dissertationis prodromus
ad serenissimum Ferdinandum II magnum etruriae ducemTitelkupfe
Lactoferricin-inspired peptide AMC-109 augments the effect of ciprofloxacin against Pseudomonas aeruginosa biofilm in chronic murine wounds
Objectives: Chronic wounds are characterised by prolonged inflammation, low mitogenic activity, high protease/low inhibitor activity, microbiota changes and biofilm formation, combined with the aetiology of the original insult. One strategy to promote healing is to terminate the parasitism-like relationship between the biofilm-growing pathogen and host response. Antimicrobial peptide AMC-109 is a potential treatment with low resistance potential and broad-spectrum coverage with rapid bactericidal effect. We aimed to investigate whether adjunctive AMC-109 could augment the ciprofloxacin effect in a chronic Pseudomonas aeruginosa wound model. Methods: Third-degree burns were inflicted on 33 BALB/c mice. Pseudomonas aeruginosa embedded in seaweed alginate was injected sub-eschar to mimic biofilm. Mice were randomised to receive AMC-109, combined AMC-109 and ciprofloxacin, ciprofloxacin, or placebo for 5 days followed by sample collection. Results: A lower bacterial load was seen in the double-treated group compared with either monotherapy group (AMC-109, p = 0.0076; ciprofloxacin, p = 0.0266). To evaluate the innate host response, cytokines and growth factors were quantified. The pro-inflammatory response was dampened in the double-treated mice compared with the mono-ciprofloxacin-treated group (p = 0.0009). Lower mobilisation of neutrophils from the bone marrow was indicated by reduced G-CSF in all treatment groups compared with placebo. Improved tissue remodelling was indicated by the highest level of tissue inhibitor of metalloproteases and low metalloprotease level in the double-treated group. Conclusion: AMC-109 showed adjunctive antipseudomonal abilities augmenting the antimicrobial effect of ciprofloxacin in this wound model. The study indicates a potential role for AMC-109 in treating chronic wounds with complicating biofilm infections