46 research outputs found

    An EvoDevo Study of Salmonid Visual Opsin Dynamics and Photopigment Spectral Sensitivity

    Get PDF
    Salmonids are ideal models as many species follow a distinct developmental program from demersal eggs and a large yolk sac to hatching at an advanced developmental stage. Further, these economically important teleosts inhabit both marine- and freshwaters and experience diverse light environments during their life histories. At a genome level, salmonids have undergone a salmonid-specific fourth whole genome duplication event (Ss4R) compared to other teleosts that are already more genetically diverse compared to many non-teleost vertebrates. Thus, salmonids display phenotypically plastic visual systems that appear to be closely related to their anadromous migration patterns. This is most likely due to a complex interplay between their larger, more gene-rich genomes and broad spectrally enriched habitats; however, the molecular basis and functional consequences for such diversity is not fully understood. This study used advances in genome sequencing to identify the repertoire and genome organization of visual opsin genes (those primarily expressed in retinal photoreceptors) from six different salmonids [Atlantic salmon (Salmo salar), brown trout (Salmo trutta), Chinook salmon (Oncorhynchus tshawytcha), coho salmon (Oncorhynchus kisutch), rainbow trout (Oncorhynchus mykiss), and sockeye salmon (Oncorhynchus nerka)] compared to the northern pike (Esox lucius), a closely related non-salmonid species. Results identified multiple orthologues for all five visual opsin classes, except for presence of a single short-wavelength-sensitive-2 opsin gene. Several visual opsin genes were not retained after the Ss4R duplication event, which is consistent with the concept of salmonid rediploidization. Developmentally, transcriptomic analyzes of Atlantic salmon revealed differential expression within each opsin class, with two of the long-wavelength-sensitive opsins not being expressed before first feeding. Also, early opsin expression in the retina was located centrally, expanding dorsally and ventrally as eye development progressed, with rod opsin being the dominant visual opsin post-hatching. Modeling by spectral tuning analysis and atomistic molecular simulation, predicted the greatest variation in the spectral peak of absorbance to be within the Rh2 class, with a ∼40 nm difference in λmax values between the four medium-wavelength-sensitive photopigments. Overall, it appears that opsin duplication and expression, and their respective spectral tuning profiles, evolved to maximize specialist color vision throughout an anadromous lifecycle, with some visual opsin genes being lost to tailor marine-based vision.publishedVersio

    Long wavelength-sensing cones of zebrafish retina exhibit multiple layers of transcriptional heterogeneity

    Get PDF
    IntroductionUnderstanding how photoreceptor genes are regulated is important for investigating retinal development and disease. While much is known about gene regulation in cones, the mechanism by which tandemly-replicated opsins, such as human long wavelength-sensitive and middle wavelength-sensitive opsins, are differentially regulated remains elusive. In this study, we aimed to further our understanding of transcriptional heterogeneity in cones that express tandemly-replicated opsins and the regulation of such differential expression using zebrafish, which express the tandemly-replicated opsins lws1 and lws2.MethodsWe performed bulk and single cell RNA-Seq of LWS1 and LWS2 cones, evaluated expression patterns of selected genes of interest using multiplex fluorescence in situ hybridization, and used exogenous thyroid hormone (TH) treatments to test selected genes for potential control by thyroid hormone: a potent, endogenous regulator of lws1 and lws2 expression.ResultsOur studies indicate that additional transcriptional differences beyond opsin expression exist between LWS1 and LWS2 cones. Bulk RNA-Seq results showed 95 transcripts enriched in LWS1 cones and 186 transcripts enriched in LWS2 cones (FC > 2, FDR < 0.05). In situ hybridization results also reveal underlying heterogeneity within the lws1- and lws2-expressing populations. This heterogeneity is evident in cones of mature zebrafish, and further heterogeneity is revealed in transcriptional responses to TH treatments.DiscussionWe found some evidence of coordinate regulation of lws opsins and other genes by exogenous TH in LWS1 vs. LWS2 cones, as well as evidence of gene regulation not mediated by TH. The transcriptional differences between LWS1 and LWS2 cones are likely controlled by multiple signals, including TH

    Dynamic changes in microglial and macrophage characteristics during degeneration and regeneration of the zebrafish retina

    No full text
    Abstract Background In contrast to mammals, zebrafish have the capacity to regenerate retinal neurons following a variety of injuries. Two types of glial cells, Müller glia (MG) and microglia, are known to exist in the zebrafish retina. Recent work has shown that MG give rise to regenerated retinal neurons, but the role of resident microglia, and the innate immune system more generally, during retinal regeneration is not well defined. Specifically, characteristics of the immune system and microglia following substantial neuron death and a successful regenerative response have not been documented. Methods The neurotoxin ouabain was used to induce a substantial retinal lesion of the inner retina in zebrafish. This lesion results in a regenerative response that largely restores retinal architecture, neuronal morphologies, and connectivities, as well as recovery of visual function. We analyzed cryosections from damaged eyes following immunofluorescence and H&E staining to characterize the initial immune response to the lesion. Whole retinas were analyzed by confocal microscopy to characterize microglia morphology and distribution. Statistical analysis was performed using a two-tailed Student’s t test comparing damaged to control samples. Results We find evidence of early leukocyte infiltration to the retina in response to ouabain injection followed by a period of immune cell proliferation that likely includes both resident microglia and substantial numbers of proliferating, extra-retinally derived macrophages, leading to rapid accumulation upon retinal damage. Following immune cell proliferation, Müller glia re-enter the cell cycle. In retinas that have regenerated the layers lost to the initial injury (histologically regenerated), microglia retain morphological features of activation, suggesting ongoing functions that are likely essential to restoration of retinal function. Conclusions Collectively, these results indicate that microglia and the immune system are dynamic during a successful regenerative response in the retina. This study provides an important framework to probe inflammation in the initiation of, and functional roles of microglia during retinal regeneration

    Nuclear Hormone Signaling and Regulation of Cone Photoreceptor Gene Expression in the Zebrafish

    No full text
    Vertebrate color vision requires spectrally selective opsin-based pigments that are expressed in separate cone photoreceptor populations. The regulation of cone opsin expression is poorly understood. The common model used to describe regulation of tandemly-replicated opsin genes in humans suggests that locus control regions (LCR) interact with each of the tandemly replicated opsin genes at random. However, it has been found that in human retina there are topographic gradients in red: green cone ratios which suggests that a trans regulatory mechanism is involved in their expression. Publications from the Stenkamp lab have shown that thyroid hormone (TH) is involved in the endogenous regulation of LWS (long-wavelength sensitive, red-sensing) opsin expression in zebrafish larvae and juveniles; more recently, research was conducted on adult zebrafish with TH treatments showing similar results. With this project, further research was done to better understand the regulation and expression of LWS1 and LWS2 cone opsin in response to TH in larvae and adult zebrafish. This included determining the effects of TH on a transgenic reporter line that has had elements deleted from the regulatory region of the LWS array and further characterizing the effect of TH on adult zebrafish cones

    Short-wavelength-sensitive 2 (Sws2) visual photopigment models combined with atomistic molecular simulations to predict spectral peaks of absorbance

    No full text
    For many species, vision is one of the most important sensory modalities for mediating essential tasks that include navigation, predation and foraging, predator avoidance, and numerous social behaviors. The vertebrate visual process begins when photons of the light interact with rod and cone photoreceptors that are present in the neural retina. Vertebrate visual photopigments are housed within these photoreceptor cells and are sensitive to a wide range of wavelengths that peak within the light spectrum, the latter of which is a function of the type of chromophore used and how it interacts with specific amino acid residues found within the opsin protein sequence. Minor differences in the amino acid sequences of the opsins are known to lead to large differences in the spectral peak of absorbance (i.e. the λmax value). In our prior studies, we developed a new approach that combined homology modeling and molecular dynamics simulations to gather structural information associated with chromophore conformation, then used it to generate statistical models for the accurate prediction of λmax values for photopigments derived from Rh1 and Rh2 amino acid sequences. In the present study, we test our novel approach to predict the λmax of phylogenetically distant Sws2 cone opsins. To build a model that can predict the λmax using our approach presented in our prior studies, we selected a spectrally-diverse set of 11 teleost Sws2 photopigments for which both amino acid sequence information and experimentally measured λmax values are known. The final first-order regression model, consisting of three terms associated with chromophore conformation, was sufficient to predict the λmax of Sws2 photopigments with high accuracy. This study further highlights the breadth of our approach in reliably predicting λmax values of Sws2 cone photopigments, evolutionary-more distant from template bovine RH1, and provided mechanistic insights into the role of known spectral tuning sites

    Age-Related Cone Abnormalities in Zebrafish with Genetic Lesions in Sonic Hedgehog

    No full text
    PURPOSE. Sonic hedgehog (Shh) signaling is essential for photoreceptor differentiation and retinal cell survival in embryonic zebrafish. The study was conducted to determine whether adult heterozygous carriers of mutant alleles for the shh gene display retinal abnormalities. METHODS. Retinal cryosections from young, middle-aged, and senescent wild-type and sonic-you ϩ/Ϫ (syu ϩ/Ϫ ) zebrafish were probed with retinal cell type-specific markers. Contralateral retinal flatmounts from these fish, and from adult albino zebrafish subjected to light-induced photoreceptor damage followed by regeneration, were hybridized with blue cone opsin cRNA for quantitative analysis of the blue cone pattern. Retinal expression of shh mRNA was measured by quantitative RT-PCR. RESULTS. Regions of cone loss and abnormal cone morphology were observed in the oldest syu ϩ/Ϫ zebrafish, although no other retinal cell type was affected. This phenotype was agerelated and genotype-specific. Cone distribution in the oldest syu ϩ/Ϫ zebrafish was predominantly random, as assessed by measuring the short-range pattern, whereas that of wild-type fish and the younger syu ϩ/Ϫ zebrafish was statistically regular. A measure of long-range pattern revealed atypical cone aggregation in the oldest syu ϩ/Ϫ zebrafish. The light-treated albino zebrafish displayed random cone patterns immediately after light toxicity, but showed cone aggregation on regeneration. Retinas from the syu ϩ/Ϫ fish showed reduced expression of shh mRNA compared with those of wild-type siblings. 9 In addition, Shh stimulates proliferation of rat Müller glia and the generation of rhodopsin-expressing cells in vitro, and in vivo subsequent to retinal damage. CONCLUSIONS. The The use of anamniote vertebrate models has uncovered important roles for Hedgehog signaling in the development of rod and cone photoreceptors and the RPE. In zebrafish embryos, reduction in Shh signaling through molecular, pharmacologic, or genetic techniques results in multiple retinal abnormalities including reduced rod and cone photoreceptor differentiation. Many inherited retinal degenerative diseases, including those related to age, are characterized by rod and/or cone photoreceptor death. 18 As a complement to the mouse models, zebrafish offer several advantages for studying retinal disorders. For example, zebrafish have a duplex retina with a substantial number of cone photoreceptors arranged in a precise mosaic that can be quantitatively assessed. 23 Zebrafish are also a model for aging and age-related disease
    corecore