165 research outputs found

    the influence of phosphate on structure and activity

    Get PDF
    Two types of manganese oxides have been prepared by hydrolysis of tetranuclear Mn(III) complexes in the presence or absence of phosphate ions. The oxides have been characterized structurally using X-ray absorption spectroscopy and functionally by O2 evolution measurements. The structures of the oxides prepared in the absence of phosphate are dominated by di-μ-oxo bridged manganese ions that form layers with limited long-range order, consisting of edge-sharing MnO6 octahedra. The average manganese oxidation state is +3.5. The structure of these oxides is closely related to other manganese oxides reported as water oxidation catalysts. They show high oxygen evolution activity in a light-driven system containing [Ru(bpy)3]2+ and S2O82− at pH 7. In contrast, the oxides formed by hydrolysis in the presence of phosphate ions contain almost no di-μ-oxo bridged manganese ions. Instead the phosphate groups are acting as bridges between the manganese ions. The average oxidation state of manganese ions is +3. This type of oxide has much lower water oxidation activity in the light-driven system. Correlations between different structural motifs and the function as a water oxidation catalyst are discussed and the lower activity in the phosphate containing oxide is linked to the absence of protonable di-μ-oxo bridges

    Artificial Photosynthesis for Solar Fuels - an Evolving Research Field within AMPEA, a Joint Programme of the European Energy Research Alliance

    Get PDF
    On the path to an energy transition away from fossil fuels to sustainable sources, the European Union is for the moment keeping pace with the objectives of the Strategic Energy Technology-Plan. For this trend to continue after 2020, scientific breakthroughs must be achieved. One main objective is to produce solar fuels from solar energy and water in direct processes to accomplish the efficient storage of solar energy in a chemical form. This is a grand scientific challenge. One important approach to achieve this goal is Artificial Photosynthesis. The European Energy Research Alliance has launched the Joint Programme "Advanced Materials & Processes for Energy Applications” (AMPEA) to foster the role of basic science in Future Emerging Technologies. European researchers in artificial photosynthesis recently met at an AMPEA organized workshop to define common research strategies and milestones for the future. Through this work artificial photosynthesis became the first energy research sub-field to be organised into what is designated "an Application” within AMPEA. The ambition is to drive and accelerate solar fuels research into a powerful European field - in a shorter time and with a broader scope than possible for individual or national initiatives. Within AMPEA the Application Artificial Photosynthesis is inclusive and intended to bring together all European scientists in relevant fields. The goal is to set up a thorough and systematic programme of directed research, which by 2020 will have advanced to a point where commercially viable artificial photosynthetic devices will be under development in partnership with industr

    Electron Transfer from Cyt b559 and Tyrosine-D to the S2 and S3 states of the water oxidizing complex in Photosystem II at Cryogenic Temperatures

    Get PDF
    The Mn4CaO5 cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with Tyrosine(Z) and P-680, which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, Tyrosine(D) (Y-D) and Cytochrome b (559) (Cyt b (559)) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b (559) and Y-D to the S-2 and S-3 states at 195 K. First, Y-D (aEuro cent) and Cyt b (559) were chemically reduced. The S-2 and S-3 states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S-1 state. EPR signals of the WOC (the S-2-state multiline signal, ML-S-2), Y-D (aEuro cent) and oxidized Cyt b (559) were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S-2 population decayed to S-1 in the S-2 samples by following a single exponential decay. Differently, S-3 samples showed an initial increase in the ML-S-2 intensity (due to S-3 to S-2 conversion) and a subsequent slow decay due to S-2 to S-1 conversion. In both cases, only a minor oxidation of Y-D was observed. In contrast, the signal intensity of the oxidized Cyt b (559) showed a two-fold increase in both the S-2 and S-3 samples. The electron donation from Cyt b (559) was much more efficient to the S-2 state than to the S-3 state

    Formation of Split Electron Paramagnetic Resonance Signals in Photosystem II Suggests That TyrosineZ Can Be Photooxidized at 5 K in the S0 and S1 States of the Oxygen-Evolving Complex

    No full text
    The effect of illumination at 5 K of photosystem II in different S-states was investigated with EPR spectroscopy. Two split radical EPR signals around g 2.0 were observed from samples given 0 and 3 flashes, respectively. The signal from the 0-flash sample was narrow, with a width of ~80 G, in which the low-field peak can be distinguished. This signal oscillated with the S1 state in the sample. The signal from the 3-flash sample was broad, with a symmetric shape of ~160 G width from peak to trough. This signal varied with the concentration of the S0 state in the sample. Both signals are assigned to arise from the donor side of PSII. Both signals relaxed fast, were formed within 10 ms after a flash, and decayed with half-times at 5 K of 3-4 min. The signal in the S0 state closely resembles split radical signals, originating from magnetic interaction between YZ and the S2 state, that were first observed in Ca2+-depleted photosystem II samples. Therefore, we assign this signal to YZ in magnetic interaction with the S0 state, YZS0. The other signal is assigned to the magnetic interaction between YZ and the S1 state, YZS1. An important implication is that YZ can be oxidized at 5 K in the S0 and S1 states. Oxidation of YZ involves deprotonation of the tyrosine. This is restricted at 5 K, and we therefore suggest that the phenolic proton of YZ is involved in a low-barrier hydrogen bond. This is an unusually short hydrogen bond in which proton movement at very low temperatures can occur

    Logistics in the life cycle of Photosystem IIlateral movement in the thylakoid membrane and activation of electron transfer

    No full text
    Due to its unique ability to split water, Photosystem II (PSII) is easily accessible to oxidative damage. Photoinhibited PSII centres diffuse laterally from the grana core region of the thylakoid membrane to the stroma lamellae in order to allow replacement of damaged proteins and cofactors. The 'new born' PSII centres in this region are characterized by the absence of the water splitting capacity and very poor ability to bind the secondary quinone acceptor, QB. After the repair process PSII has to regain the water splitting capacity. This requires a set of well-defined electron transfer reactions leading to assembly of the Mn-cluster. In order to minimize the danger of photoinhibition during these earlier stages of photoactivation of PSII, auxiliary donors to the primary donor P680+, such as redox active tyrosine on D2 protein, YD, and cytochrome b559 become involved in the electron transport reactions by providing necessary electrons. Cytochrome b559 may also serve as an electron acceptor to QA if elevated light intensities occur during the photoactivation process. These reactions lead to activation of QB binding, and finally to the assembly of the Mn-cluster. All these electron transport events occur simultaneously with the lateral movement of PSII centres back to the appressed regions of the grana core, where the pool of the most active PSII is situated
    corecore