411 research outputs found
Prey selection by the copepod Diacyclops thomasi
1. Adult females of the predaceous copepod, Diacyclops thomasi , consistently selected for the soft-bodied rotifers Synchaeta pectinata, Polyarthra major and P. remata when presented various combinations of 8 rotifer species and 2 crustacean species as prey. Diacyclops did not select for other small, soft-bodied rotifers such as P. vulgaris and Ascomorpha ecaudis and, for loricate species such as Keratella cochlearis, K. crassa and for large soft-bodied adult Asplanchna priodonta . The small cladocerans, Bosmina longirostris and Chydorus sphaericus also were resistant to predation by this copepod.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47756/1/442_2004_Article_BF00379662.pd
Accumulation of heavy metals in food web components across a gradient of lakes
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109770/1/lno20004571525.pd
In vitro evaluation of novel antimicrobial coatings for surgical sutures using octenidine
Background: Sutures colonized by bacteria represent a challenge in surgery due to their potential to cause surgical site infections. In order to reduce these type of infections antimicrobially coated surgical sutures are currently under development. In this study, we investigated the antimicrobial drug octenidine as a coating agent for surgical sutures. To achieve high antimicrobial efficacy and required biocompatibility for medical devices, we focused on optimizing octenidine coatings based on fatty acids. For this purpose, antimicrobial sutures were prepared with either octenidine-laurate or octenidine-palmitate at 11, 22, and 33 mu g/cm drug concentration normalized per length of sutures. Octenidine containing sutures were compared to the commercial triclosan-coated suture Vicryl (R) Plus. The release of octenidine into aqueous solution was analyzed and long-term antimicrobial efficacy was assessed via agar diffusion tests using Staphylococcus aureus. For determining biocompatibility, cytotoxicity assays (WST-1) were performed using L-929 mouse fibroblasts. Results: In a 7 days elution experiment, octenidine-palmitate coated sutures demonstrated much slower drug release (11 mu g/cm: 7 %;22 mu g/cm: 5 %;33 mu g/cm: 33 %) than octenidine-laurate sutures (11 mu g/cm: 82 %;22 mu g/cm: 88 %;33 mu g/cm: 87 %). Furthermore sutures at 11 mu g/cm drug content were associated with acceptable cytotoxicity according to ISO 10993-5 standard and showed, similar to Vicryl (R) Plus, relevant efficacy to inhibit surrounding bacterial growth for up to 9 days. Conclusions: Octenidine coated sutures with a concentration of 11 mu g/cm revealed high antimicrobial efficacy and biocompatibility. Due to their delayed release, palmitate carriers should be preferred. Such coatings are candidates for clinical testing in regard to their safety and efficacy
Effect of a Novel Nonviral Gene Delivery of BMP-2 on Bone Healing
Background. Gene therapeutic drug delivery approaches have been introduced to improve the efficiency of growth factors at the site of interest. This study investigated the efficacy and safety of a new nonviral copolymer-protected gene vector (COPROG) for the stimulation of bone healing. Methods. In vitro, rat osteoblasts were transfected with COPROG + luciferase plasmid or COPROG + hBMP-2 plasmid. In vivo, rat tibial fractures were intramedullary stabilized with uncoated versus COPROG+hBMP-2-plasmid-coated titanium K-wires. The tibiae were prepared for biomechanical and histological analyses at days 28 and 42 and for transfection/safety study at days 2, 4, 7, 28, and 42. Results. In vitro results showed luciferase expression until day 21, and hBMP-2-protein was measured from day 2 – day 10. In vivo, the local application of hBMP-2-plasmid showed a significantly higher maximum load after 42 days compared to that in the control. The histomorphometric analysis revealed a significantly less mineralized periosteal callus area in the BMP-2 group compared to the control at day 28. The rt-PCR showed no systemic biodistribution of luciferase RNA. Conclusion. A positive effect on fracture healing by nonviral BMP-2 plasmid application from COPROG-coated implants could be shown in this study; however, the effect of the vector may be improved with higher plasmid concentrations. Transfection showed no biodistribution to distant organs and was considered to be safe
Expamers: a new technology to control T cell activation
T cell activation is a cornerstone in manufacturing of T cell-based therapies, and precise control over T cell activation is important in the development of the next generation T-cell based therapeutics. This need cannot be fulfilled by currently available methods for T cell stimulation, in particular not in a time dependent manner. Here, we describe a modular activation reagent called Expamers, which addresses these limitations. Expamers are versatile stimuli that are intended for research and clinical use. They are readily soluble and can be rapidly bound and removed from the cell surface, allowing nearly instantaneous initiation and termination of activation signal, respectively. Hence, Expamers enable precise regulation of T cell stimulation duration and provide promise of control over T cell profiles in future products. Expamers can be easily adopted to different T cell production formats and have the potential to increase efficacy of T cell immunotherapeutics
FAS-dependent cell death in α-synuclein transgenic oligodendrocyte models of multiple system atrophy
Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention
Novel Serial Positive Enrichment Technology Enables Clinical Multiparameter Cell Sorting
A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve – especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4high/CD25high/CD45RAhigh ‘regulatory T cells’ and CD8high/CD62Lhigh/CD45RAneg ‘central memory T cells’, have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research
Mesenchymal Stem Cells in a Transgenic Mouse Model of Multiple System Atrophy: Immunomodulation and Neuroprotection
Mesenchymal stem cells (MSC) are currently strong candidates for cell-based therapies. They are well known for their differentiation potential and immunoregulatory properties and have been proven to be potentially effective in the treatment of a large variety of diseases, including neurodegenerative disorders. Currently there is no treatment that provides consistent long-term benefits for patients with multiple system atrophy (MSA), a fatal late onset α-synucleinopathy. Principally neuroprotective or regenerative strategies, including cell-based therapies, represent a powerful approach for treating MSA. In this study we investigated the efficacy of intravenously applied MSCs in terms of behavioural improvement, neuroprotection and modulation of neuroinflammation in the (PLP)-αsynuclein (αSYN) MSA model.MSCs were intravenously applied in aged (PLP)-αSYN transgenic mice. Behavioural analyses, defining fine motor coordination and balance capabilities as well as stride length analysis, were performed to measure behavioural outcome. Neuroprotection was assessed by quantifying TH neurons in the substantia nigra pars compacta (SNc). MSC treatment on neuroinflammation was analysed by cytokine measurements (IL-1α, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, GM-CSF, INFγ, MCP-1, TGF-β1, TNF-α) in brain lysates together with immunohistochemistry for T-cells and microglia. Four weeks post MSC treatment we observed neuroprotection in the SNc, as well as downregulation of cytokines involved in neuroinflammation. However, there was no behavioural improvement after MSC application.To our knowledge this is the first experimental approach of MSC treatment in a transgenic MSA mouse model. Our data suggest that intravenously infused MSCs have a potent effect on immunomodulation and neuroprotection. Our data warrant further studies to elucidate the efficacy of systemically administered MSCs in transgenic MSA models
- …