5 research outputs found
Time-Resolved X-ray Microscopy of Spin-Torque-Induced Magnetic Vortex Gyration
Time-resolved X-ray microscopy is used to image the influence of alternating
high-density currents on the magnetization dynamics of ferromagnetic vortices.
Spin-torque induced vortex gyration is observed in micrometer-sized permalloy
squares. The phases of the gyration in structures with different chirality are
compared to an analytical model and micromagnetic simulations, considering both
alternating spinpolarized currents and the current's Oersted field. In our case
the driving force due to spin-transfer torque is about 70% of the total
excitation while the remainder originates from the current's Oersted field.
This finding has implications to magnetic storage devices using spin-torque
driven magnetization switching and domain-wall motion.Comment: 10 pages, 3 figure
Proposal for a standard problem for micromagnetic simulations including spin-transfer torque
The spin-transfer torque between itinerant electrons and the magnetization in a ferromagnet is of fundamental interest for the applied physics community. To investigate the spin-transfer torque, powerful simulation tools are mandatory. We propose a micromagnetic standard problem includingthe spin-transfer torque that can be used for the validation and falsication of micromagnetic simulation tools. The work is based on the micromagnetic model extended by the spin-transfer torque in continuously varying magnetizations as proposed by Zhang and Li. The standard problem geometry is a permalloy cuboid of 100 nm edge length and 10 nm thickness, which contains a Landau pattern with a vortex in the center of the structure. A spin-polarized dc current density of 1012 A/m2 flows laterally through the cuboid and moves the vortex core to a new steady-state position. We show that the new vortex-core position is a sensitive measure for the correctness of micromagnetic simulatorsthat include the spin-transfer torque. The suitability of the proposed problem as a standard problem is tested by numerical results from four different finite-difference and finite-element-based simulation tools