3,063 research outputs found
Nanometer-scale sharpness in corner-overgrown heterostructures
A corner-overgrown GaAs/AlGaAs heterostructure is investigated with
transmission and scanning transmission electron microscopy, demonstrating
self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In
the AlGaAs layers we observe self-ordered diagonal stripes, precipitating
exactly at the corner, which are regions of increased Al content measured by an
XEDS analysis. A quantitative model for self-limited growth is adapted to the
present case of faceted MBE growth, and the corner sharpness is discussed in
relation to quantum confined structures. We note that MBE corner overgrowth
maintains nm-sharpness even after microns of growth, allowing the realization
of corner-shaped nanostructures.Comment: 4 pages, 3 figure
Rotated stripe order and its competition with superconductivity in LaSrCuO
We report the observation of a bulk charge modulation in
LaSrCuO (LSCO) with a characteristic in-plane wave-vector
of (0.236, ), with =0.011 r.l.u. The transverse shift of
the ordering wave-vector indicates the presence of rotated charge-stripe
ordering, demonstrating that the charge ordering is not pinned to the Cu-O bond
direction. On cooling through the superconducting transition, we find an abrupt
change in the growth of the charge correlations and a suppression of the charge
order parameter indicating competition between the two orderings. Orthorhombic
LSCO thus helps bridge the apparent disparities between the behavior previously
observed in the tetragonal "214" cuprates and the orthorhombic yttrium and
bismuth-based cuprates and thus lends strong support to the idea that there is
a common motif to charge order in all cuprate families.Comment: 6 pages, 4 figue
Generation of mechanical squeezing via magnetic dipoles on cantilevers
A scheme to squeeze the center-of-mass motional quadratures of a quantum
mechanical oscillator below its standard quantum limit is proposed and analyzed
theoretically. It relies on the dipole-dipole coupling between a magnetic
dipole mounted on the tip of a cantilever to equally oriented dipoles located
on a mesoscopic tuning fork. We also investigate the influence of several
sources of noise on the achievable squeezing, including classical noise in the
driving fork and the clamping noise in the oscillator. A detection of the state
of the cantilever based on state transfer to a light field is considered. We
investigate possible limitations of that scheme.Comment: 11 pages, 11 figures, submitted to PR
Magnetic inhomogeneities in the quadruple perovskite manganite [Y_{2-x}Mn_{x}] Mn_{6}O_{12}
A combination of competing exchange interactions and substitutional disorder gives rise to magnetic inhomogeneities in the [Y_{2-x}Mn_{x}]Mn_{6}O-{12}x = 0.23 and 0.16 quadruple perovskite manganites. Our neutron powder scattering measurements show that both the x=0.23 and 0.16 samples separate into two distinct magnetic phases; below T_{1} = 120 ± 10 K the system undergoes a transition from a paramagnetic phase to a phase characterized by short-range antiferromagnetic clusters contained in a paramagnetic matrix, and below T2≈65 K the system is composed of well-correlated long-range collinear ferrimagnetic order, punctuated by short-range antiferromagnetic clusters. A sharp increase in the antiferromagnetic phase fraction is observed below ≈33 K, concomitant with a decrease in the ferrimagnetic phase fraction. Our results demonstrate that the theoretically proposed antiferromagnetic phase is stabilized in the [Y_{2-x}Mn_{x}] Mn_{6}O_{12} manganites in the presence of dominant B-B exchange interactions, as predicted
Ion acceleration in laser generated megatesla magnetic vortex
Magnetic Vortex Acceleration (MVA) from near critical density targets is one of the promising schemes of laser-driven ion acceleration. 3D particle-in-cell simulations are used to explore a more extensive laser-target parameter space than previously reported in the literature as well as to study the laser pulse coupling to the target, the structure of the fields, and the properties of the accelerated ion beam in the MVA scheme. The efficiency of acceleration depends on the coupling of the laser energy to the self-generated channel in the target. The accelerated proton beams demonstrate a high level of collimation with achromatic angular divergence, and carry a significant amount of charge. For petawatt-class lasers, this acceleration regime provides a favorable scaling of the maximum ion energy with the laser power for the optimized interaction parameters. The megatesla-level magnetic fields generated by the laser-driven coaxial plasma structure in the target are a prerequisite for accelerating protons to the energy of several hundred mega-electron-volts
A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams
We present a novel, cascaded acceleration scheme for the generation of spectrally controlled ion beams using a laser-based accelerator in a 'double-stage' setup. An MeV proton beam produced during a relativistic laser–plasma interaction on a thin foil target is spectrally shaped by a secondary laser–plasma interaction on a separate foil, reliably creating well-separated quasi-monoenergetic features in the energy spectrum. The observed modulations are fully explained by a one-dimensional (1D) model supported by numerical simulations. These findings demonstrate that laser acceleration can, in principle, be applied in an additive manner.Deutsche Forschungsgemeinschaft (DFG contract no. TR18)Deutsche Forschungsgemeinschaft (contract no. 03ZIK052)European Union (Laserlab Europe
Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS.
Reactive astrocytes influence post-injury recovery, repair, and pathogenesis of the mammalian CNS. Much of the regulation of astrocyte reactivity, however, remains to be understood. Using genetic loss and gain-of-function analyses in vivo, we show that the conserved MAP3K13 (also known as leucine zipper-bearing kinase [LZK]) promotes astrocyte reactivity and glial scar formation after CNS injury. Inducible LZK gene deletion in astrocytes of adult mice reduced astrogliosis and impaired glial scar formation, resulting in increased lesion size after spinal cord injury. Conversely, LZK overexpression in astrocytes enhanced astrogliosis and reduced lesion size. Remarkably, in the absence of injury, LZK overexpression alone induced widespread astrogliosis in the CNS and upregulated astrogliosis activators pSTAT3 and SOX9. The identification of LZK as a critical cell-intrinsic regulator of astrocyte reactivity expands our understanding of the multicellular response to CNS injury and disease, with broad translational implications for neural repair
Magnetic inhomogeneities in the quadruple perovskite manganite [YMn]MnMnMnO
A combination of competing exchange interactions and substitutional disorder
gives rise to magnetic inhomogeneities in the
[YMn]MnMnMnO and quadruple
perovskite manganites. Our neutron powder scattering measurements show that
both the and samples separate into two distinct magnetic
phases; below T = 120 10 K the system undergoes a transition from a
paramagnetic phase to a phase characterised by short range antiferromagnetic
clusters contained in a paramagnetic matrix, and below T 65 K, the
system is composed of well correlated long range collinear ferrimagnetic order,
punctuated by short range antiferromagnetic clusters. A sharp increase in the
antiferromagnetic phase fraction is observed below 33 K, concomitant
with a decrease in the ferrimagnetic phase fraction. Our results demonstrate
that the theoretically proposed AFM phase is stabilised in the
[YMn]MnMnMnO manganites in the presence of dominant B-B
exchange interactions, as predicted.Comment: 12 pages, 6 figure
Laser-heated capillary discharge plasma waveguides for electron acceleration to 8 GeV
A plasma channel created by the combination of a capillary discharge and inverse Bremsstrahlung laser heating enabled the generation of electron bunches with energy up to 7.8 GeV in a laser-driven plasma accelerator. The capillary discharge created an initial plasma channel and was used to tune the plasma temperature, which optimized laser heating. Although optimized colder initial plasma temperatures reduced the ionization degree, subsequent ionization from the heater pulse created a fully ionized plasma on-axis. The heater pulse duration was chosen to be longer than the hydrodynamic timescale of ≈ 1 ns, such that later temporal slices were more efficiently guided by the channel created by the front of the pulse. Simulations are presented which show that this thermal self-guiding of the heater pulse enabled channel formation over 20 cm. The post-heated channel had lower on-axis density and increased focusing strength compared to relying on the discharge alone, which allowed for guiding of relativistically intense laser pulses with a peak power of 0.85 PW and wakefield acceleration over 15 diffraction lengths. Electrons were injected into the wake in multiple buckets and times, leading to several electron bunches with different peak energies. To create single electron bunches with low energy spread, experiments using localized ionization injection inside a capillary discharge waveguide were performed. A single injected bunch with energy 1.6 GeV, charge 38 pC, divergence 1 mrad, and relative energy spread below 2% full-width half-maximum was produced in a 3.3 cm-long capillary discharge waveguide. This development shows promise for mitigation of energy spread and future high efficiency staged acceleration experiments
- …