4,020 research outputs found
Stalled and stall-free performance of axial-flow compressor stage with three inlet-guide-vane and stator-blade settings
The performance of the first stage of a transonic, multistage compressor was mapped over a range of inlet-guide-vane and stator-blade settings. Both stall-free and deep-stall performance data were obtained. For the settings tested, as stall was encountered and flow was further reduced, a relatively sharp drop in pressure ratio occurred and was followed by a continuing but more gradual reduction in pressure ratio with reduced flow. The position of the stall line on the map of pressure ratio against equivalent weight flow was essentially unaffected over the range of inlet-guide-vane and stator-blade settings
Quantum-measurement backaction from a Bose-Einstein condensate coupled to a mechanical oscillator
We study theoretically the dynamics of a hybrid optomechanical system consisting of a macroscopic mechanical membrane magnetically coupled to a spinor Bose-Einstein condensate via a nanomagnet attached at the membrane center. We demonstrate that this coupling permits us to monitor indirectly the center-of-mass position of the membrane via measurements of the spin of the condensed atoms. These measurements normally induce a significant backaction on the membrane motion, which we quantify for the cases of thermal and coherent initial states of the membrane. We discuss the possibility of measuring this quantum backaction via repeated measurements. We also investigate the potential to generate nonclassical states of the membrane, in particular Schrödinger-cat states, via such repeated measurements
Communication in quantum networks of logical bus topology
Perfect state transfer (PST) is discussed in the context of passive quantum
networks with logical bus topology, where many logical nodes communicate using
the same shared media, without any external control. The conditions under
which, a number of point-to-point PST links may serve as building blocks for
the design of such multi-node networks are investigated. The implications of
our results are discussed in the context of various Hamiltonians that act on
the entire network, and are capable of providing PST between the logical nodes
of a prescribed set in a deterministic manner.Comment: 9 pages, 1 figur
Compton Scattering on Black Body Photons
We examine Compton scattering of electrons on black body photons in the case
where the electrons are highly relativistic, but the center of mass energy is
small in comparison with the electron mass. We derive the partial lifetime of
electrons in the LEP accelerator due to this form of scattering in the vacuum
beam pipe and compare it with previous results.Comment: Comments revised, 16 pages, ReVTeX, 2 Postscript figure
Data dependent energy modelling for worst case energy consumption analysis
Safely meeting Worst Case Energy Consumption (WCEC) criteria requires
accurate energy modeling of software. We investigate the impact of instruction
operand values upon energy consumption in cacheless embedded processors.
Existing instruction-level energy models typically use measurements from random
input data, providing estimates unsuitable for safe WCEC analysis.
We examine probabilistic energy distributions of instructions and propose a
model for composing instruction sequences using distributions, enabling WCEC
analysis on program basic blocks. The worst case is predicted with statistical
analysis. Further, we verify that the energy of embedded benchmarks can be
characterised as a distribution, and compare our proposed technique with other
methods of estimating energy consumption
Quantum measurement backaction from a BEC coupled to a mechanical oscillator
We study theoretically the dynamics of a a hybrid optomechanical system
consisting of a macroscopic mechanical membrane magnetically coupled to a
spinor Bose-Einstein condensate via a nanomagnet attached at the membrane
center. We demonstrate that this coupling permits us to monitor indirectly the
center-of-mass position of the membrane via measurements of the spin of the
condensed atoms. These measurements normally induce a significant backaction on
the membrane motion, which we quantify for the cases of thermal and coherent
initial states of the membrane. We discuss the possibility of measuring that
quantum backaction via repeated measurements. We also investigate the potential
to generate non-classical states of the membrane, in particular Schrodinger cat
states, via such repeated measurements.Comment: 14 pages, 4 figures. Submitted to PR
The role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity
We analyze a detailed model of a Bose-Einstein condensate trapped in a ring
optical resonator and contrast its classical and quantum properties to those of
a Fabry-P{\'e}rot geometry. The inclusion of two counter-propagating light
fields and three matter field modes leads to important differences between the
two situations. Specifically, we identify an experimentally realizable region
where the system's behavior differs strongly from that of a BEC in a
Fabry-P\'{e}rot cavity, and also where quantum corrections become significant.
The classical dynamics are rich, and near bifurcation points in the mean-field
classical system, the quantum fluctuations have a major impact on the system's
dynamics.Comment: 11 pages, 11 figures, submitted to PR
- …