888 research outputs found
Molecularly imprinted conductive polymers for controlled trafficking of neurotransmitters at solid–liquid interfaces
We realize a molecularly imprinted polymer (MIP) which is imprinted with the
retinal neurotransmitter glutamate. The films prepared by electrochemical
deposition have a smooth surface with a granular morphology as observed using
an atomic force microscope. Multiple reflection attenuated total reflection
infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS)
are used to chemically confirm the imprint of a neurotransmitter in the MIP at
the solid–liquid and the solid–air interface, respectively. Fluorescence
spectroscopy using the dye fluorescamine is used to monitor the changes in
neurotransmitter concentration in various solvents induced by application of
voltage to the MIP. By controlling neurotransmitter trafficking across a
solid–liquid interface with voltage, we suggest the possibility of using such
a neurotransmitter imprinted MIP for chemical stimulation of retinal neurons.
The current state of the art approach to restore sight in certain cases of
blindness is the replacement of damaged photoreceptors by a subretinal implant
consisting of light-sensitive photodiodes. Thus a future perspective of our
work would be to chemically stimulate the neurons by replacing the photodiodes
in the subretinal implant by the neurotransmitter imprinted polymer film
Tomography of X-ray Nova Muscae 1991: Evidence for ongoing mass transfer and stream-disc overflow
We present a spectroscopic analysis of the black hole binary Nova Muscae 1991
in quiescence using data obtained in 2009 with MagE on the Magellan Clay
telescope and in 2010 with IMACS on the Magellan Baade telescope at the Las
Campanas Observatory. Emission from the disc is observed in H alpha, H beta and
Ca II (8662 A). A prominent hotspot is observed in the Doppler maps of all
three emission lines. The existence of this spot establishes ongoing mass
transfer from the donor star in 2009-2010 and, given its absence in the
1993-1995 observations, demonstrates the presence of a variable hotspot in the
system. We find the radial distance to the hotspot from the black hole to be
consistent with the circularization radius. Our tomograms are suggestive of
stream-disc overflow in the system. We also detect possible Ca II (8662 A)
absorption from the donor star.Comment: 10 pages, 11 figures, 1 table. Accepted for publication in MNRA
Recommended from our members
Magnetostratigraphy and paleomagnetic poles from Late Triassic-earliest Jurassic strata of the Newark basin: Discussion and reply
The Discussion of Lucas and others underscores the potential usefulness of magnetostratigraphy for correlation between red beds of the broadly coeval Chinle Group of the western interior and the Newark Supergroup of eastern North America. Detailed magnetostratigraphic correlation between the Newark and the Chinle is very likely to change significantly, however, with the addition of new data from both of these units, and hence such an attempt as proposed in the Discussion may be premature
Mutation of the phospholipase C-γ1–binding site of LAT affects both positive and negative thymocyte selection
Linker for activation of T cells (LAT) is a scaffolding adaptor protein that is critical for T cell development and function. A mutation of LAT (Y136F) that disrupts phospholipase C-γ1 activation and subsequent calcium influx causes a partial block in T cell development and leads to a severe lymphoproliferative disease in homozygous knock-in mice. One possible contribution to the fatal disease of LAT Y136F knock-in mice could be from autoreactive T cells generated in these mice because of altered thymocyte selection. To examine the impact of the LAT Y136F mutation on thymocyte positive and negative selection, we bred this mutation onto the HY T cell receptor (TCR) transgenic, recombination activating gene-2 knockout background. Female mice with this genotype showed a severe defect in positive selection, whereas male mice exhibited a phenotype resembling positive selection (i.e., development and survival of CD8(hi) HY TCR-specific T cells) instead of negative selection. These results support the hypothesis that in non-TCR transgenic, LAT Y136F knock-in mice, altered thymocyte selection leads to the survival and proliferation of autoreactive T cells that would otherwise be negatively selected in the thymus
Deafness and Orality: An Electronic Conversation
Processing Note: This is a symposium and has a lot of participants, listed as authors and recorded here in alphabetical order.AbstractNot
Automatic analysis of facilitated taste-liking
This paper focuses on: (i) Automatic recognition of taste-liking
from facial videos by comparatively training and evaluating models
with engineered features and state-of-the-art deep learning
architectures, and (ii) analysing the classification results along the
aspects of facilitator type, and the gender, ethnicity, and personality
of the participants. To this aim, a new beverage tasting dataset
acquired under different conditions (human vs. robot facilitator
and priming vs. non-priming facilitation) is utilised. The experimental
results show that: (i) The deep spatiotemporal architectures
provide better classification results than the engineered feature
models; (ii) the classification results for all three classes of liking,
neutral and disliking reach F1 scores in the range of 71%-91%; (iii)
the personality-aware network that fuses participants’ personality
information with that of facial reaction features provides improved
classification performance; and (iv) classification results vary across
participant gender, but not across facilitator type and participant
ethnicity.EPSR
Cellular and Molecular Bases of the Initiation of Fever
All phases of lipopolysaccharide (LPS)-induced fever are mediated by prostaglandin (PG) E(2). It is known that the second febrile phase (which starts at ~1.5 h post-LPS) and subsequent phases are mediated by PGE(2) that originated in endotheliocytes and perivascular cells of the brain. However, the location and phenotypes of the cells that produce PGE(2) triggering the first febrile phase (which starts at ~0.5 h) remain unknown. By studying PGE(2) synthesis at the enzymatic level, we found that it was activated in the lung and liver, but not in the brain, at the onset of the first phase of LPS fever in rats. This activation involved phosphorylation of cytosolic phospholipase A(2) (cPLA(2)) and transcriptional up-regulation of cyclooxygenase (COX)-2. The number of cells displaying COX-2 immunoreactivity surged in the lung and liver (but not in the brain) at the onset of fever, and the majority of these cells were identified as macrophages. When PGE(2) synthesis in the periphery was activated, the concentration of PGE(2) increased both in the venous blood (which collects PGE(2) from tissues) and arterial blood (which delivers PGE(2) to the brain). Most importantly, neutralization of circulating PGE(2) with an anti-PGE(2) antibody both delayed and attenuated LPS fever. It is concluded that fever is initiated by circulating PGE(2) synthesized by macrophages of the LPS-processing organs (lung and liver) via phosphorylation of cPLA(2) and transcriptional up-regulation of COX-2. Whether PGE(2) produced at the level of the blood–brain barrier also contributes to the development of the first phase remains to be clarified
Molecular Sex Differences in Human Serum
Background: Sex is an important factor in the prevalence, incidence, progression, and response to treatment of many medical conditions, including autoimmune and cardiovascular diseases and psychiatric conditions. Identification of molecular differences between typical males and females can provide a valuable basis for exploring conditions differentially affected by sex. Methodology/Principal Findings: Using multiplexed immunoassays, we analyzed 174 serum molecules in 9 independent cohorts of typical individuals, comprising 196 males and 196 females. Sex differences in analyte levels were quantified using a meta-analysis approach and put into biological context using k-means to generate clusters of analytes with distinct biological functions. Natural sex differences were established in these analyte groups and these were applied to illustrate sexually dimorphic analyte expression in a cohort of 22 males and 22 females with Asperger syndrome. Reproducible sex differences were found in the levels of 77 analytes in serum of typical controls, and these comprised clusters of molecules enriched with distinct biological functions. Analytes involved in fatty acid oxidation/hormone regulation, immune cell growth and activation, and cell death were found at higher levels in females, and analytes involved in immune cell chemotaxis and other indistinct functions were higher in males. Comparison of these naturally occurring sex differences against a cohort of people with Asperger syndrome indicated that a cluster of analytes that had functions related to fatty acid oxidation/hormone regulation was associated with sex and the occurren
- …