478 research outputs found
From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields
We review methods to measure magnetic fields within the corona using the
polarized light in magnetic-dipole (M1) lines. We are particularly interested
in both the global magnetic-field evolution over a solar cycle, and the local
storage of magnetic free energy within coronal plasmas. We address commonly
held skepticisms concerning angular ambiguities and line-of-sight confusion. We
argue that ambiguities are in principle no worse than more familiar remotely
sensed photospheric vector-fields, and that the diagnosis of M1 line data would
benefit from simultaneous observations of EUV lines. Based on calculations and
data from eclipses, we discuss the most promising lines and different
approaches that might be used. We point to the S-like [Fe {\sc XI}] line (J=2
to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the
hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\sc XIII}] currently observed
by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will
be made possible with the new generation of coronagraphs, in three distinct
ways: (i) through single point inversions (which encompasses also the analysis
of MHD wave modes), (ii) using direct comparisons of synthetic MHD or
force-free models with polarization data, and (iii) using tomographic
techniques.Comment: Accepted by Solar Physics, April 201
How does the substrate affect the Raman and excited state spectra of a carbon nanotube?
We study the optical properties of a single, semiconducting single-walled
carbon nanotube (CNT) that is partially suspended across a trench and partially
supported by a SiO2-substrate. By tuning the laser excitation energy across the
E33 excitonic resonance of the suspended CNT segment, the scattering
intensities of the principal Raman transitions, the radial breathing mode
(RBM), the G-mode and the D-mode show strong resonance enhancement of up to
three orders of magnitude. In the supported part of the CNT, despite a loss of
Raman scattering intensity of up to two orders of magnitude, we recover the E33
excitonic resonance suffering a substrate-induced red shift of 50 meV. The peak
intensity ratio between G-band and D-band is highly sensitive to the presence
of the substrate and varies by one order of magnitude, demonstrating the much
higher defect density in the supported CNT segments. By comparing the E33
resonance spectra measured by Raman excitation spectroscopy and
photoluminescence (PL) excitation spectroscopy in the suspended CNT segment, we
observe that the peak energy in the PL excitation spectrum is red-shifted by 40
meV. This shift is associated with the energy difference between the localized
exciton dominating the PL excitation spectrum and the free exciton giving rise
to the Raman excitation spectrum. High-resolution Raman spectra reveal
substrate-induced symmetry breaking, as evidenced by the appearance of
additional peaks in the strongly broadened Raman G band. Laser-induced line
shifts of RBM and G band measured on the suspended CNT segment are both linear
as a function of the laser excitation power. Stokes/anti-Stokes measurements,
however, reveal an increase of the G phonon population while the RBM phonon
population is rather independent of the laser excitation power.Comment: Revised manuscript, 20 pages, 8 figure
The Association Between Pediatric Faculty Factors and Resident Physician Ratings of Teaching Effectiveness
Background. Faculty factors not inherently related to teaching effectiveness can influence teaching ratings. No studies have focused on pediatric faculty who possess unique differences from general medical faculty. Methods. We designed a retrospective observational study to compare faculty teaching ratings with measured factors across 3 academic pediatric institutions. Results. Our study included 196 faculty members. The majority (76%) of variation in teaching effectiveness ratings was not accounted for by any measured variable, but 24% was attributed to measurable factors. Increased resident exposure (sequential r2 =.10, P < .0001) significantly affected teaching effectiveness. Variation between resident ratings of pediatric faculty teaching can be partially explained by measured factors not necessarily related to teaching effectiveness. Conclusions. The identification of faculty factors that significantly contribute to rating variation can enhance interpretation of these rating
Stokes Diagnostis of 2D MHD-simulated Solar Magnetogranulation
We study the properties of solar magnetic fields on scales less than the
spatial resolution of solar telescopes. A synthetic infrared
spectropolarimetric diagnostics based on a 2D MHD simulation of
magnetoconvection is used for this. We analyze two time sequences of snapshots
that likely represent two regions of the network fields with their immediate
surrounding on the solar surface with the unsigned magnetic flux density of 300
and 140 G. In the first region we find from probability density functions of
the magnetic field strength that the most probable field strength at logtau_5=0
is equal to 250 G. Weak fields (B < 500 G) occupy about 70% of the surface,
while stronger fields (B 1000 G) occupy only 9.7% of the surface. The magnetic
flux is -28 G and its imbalance is -0.04. In the second region, these
parameters are correspondingly equal to 150 G, 93.3 %, 0.3 %, -40 G, and -0.10.
We estimate the distribution of line-of-sight velocities on the surface of log
tau_5=-1. The mean velocity is equal to 0.4 km/s in the first simulated region.
The averaged velocity in the granules is -1.2 km/s and in the intergranules is
2.5 km/s. In the second region, the corresponding values of the mean velocities
are equal to 0, -1.8, 1.5 km/s. In addition we analyze the asymmetry of
synthetic Stokes-V profiles of the Fe I 1564.8 nm line. The mean values of the
amplitude and area asymmetry do not exceed 1%. The spatially smoothed amplitude
asymmetry is increased to 10% while the area asymmetry is only slightly varied.Comment: 24 pages, 12 figure
Neuropsychological Follow-up After Neonatal ECMO
OBJECTIVE: To assess the longitudinal development of intelligence and its relation to school abstract
performance in a nationwide cohort of neonatal extracorporeal membrane oxygenation
(ECMO) survivors and evaluate predictors of outcome at 8 years of age.
METHODS: Repeated measurements assessed intelligence of neonatal ECMO survivors at 2,
5, and 8 years (n = 178) with the use of validated, standardized instruments. Selective
attention (n = 148) and type of education were evaluated in the 8-year-olds.
RESULTS: Intelligence remained stable and average across development (mean ± SD IQ: at
2 years, 102 ± 18; at 5 years, 100 ± 17; and at 8 years, 99 ± 17 [P = .15]). Children attending
regular education without the need for help (n
Trends in Pharmacotherapy for Bladder Dysfunction among Children in the United States, 2000 to 2013
Bladder-related issues such as nocturnal enuresis and incontinence have long been a part of general pediatric practice. Increasingly, clinicians are prescribing medications directed at a variety of types of bladder dysfunction, but no prior population-based data exist. We used MarketScan health care claims data on 32 074 638 insured children to estimate utilization patterns by age, sex, year, and geographic region in the United States from 2000 to 2013, and to assess related diagnosis codes. Approximately 1 in 500 children filled an antimuscarinic prescription. The most common prescriptions were for oxybutynin (78%) and tolterodine (17%). Rates were highest at ages 6 to 10 years (65/100 000 person-months), 31% higher for girls versus boys, peaked in 2011 (44/100 000 person-months), and were highest in the Midwest (59/100 000 person-months). Seventy-three percent of children with prescriptions had diagnosis codes for genitourinary symptoms, and 13% had codes for congenital anomalies. Research is needed regarding the comparative effectiveness and safety of these drugs in children
Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets
The spins of ten stellar black holes have been measured using the
continuum-fitting method. These black holes are located in two distinct classes
of X-ray binary systems, one that is persistently X-ray bright and another that
is transient. Both the persistent and transient black holes remain for long
periods in a state where their spectra are dominated by a thermal accretion
disk component. The spin of a black hole of known mass and distance can be
measured by fitting this thermal continuum spectrum to the thin-disk model of
Novikov and Thorne; the key fit parameter is the radius of the inner edge of
the black hole's accretion disk. Strong observational and theoretical evidence
links the inner-disk radius to the radius of the innermost stable circular
orbit, which is trivially related to the dimensionless spin parameter a_* of
the black hole (|a_*| < 1). The ten spins that have so far been measured by
this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95.
The robustness of the method is demonstrated by the dozens or hundreds of
independent and consistent measurements of spin that have been obtained for
several black holes, and through careful consideration of many sources of
systematic error. Among the results discussed is a dichotomy between the
transient and persistent black holes; the latter have higher spins and larger
masses. Also discussed is recently discovered evidence in the transient sources
for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2,
6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405)
who find no evidence for a correlation between the power of ballistic jets
and black hole spi
Small-scale solar magnetic fields
As we resolve ever smaller structures in the solar atmosphere, it has become
clear that magnetism is an important component of those small structures.
Small-scale magnetism holds the key to many poorly understood facets of solar
magnetism on all scales, such as the existence of a local dynamo, chromospheric
heating, and flux emergence, to name a few. Here, we review our knowledge of
small-scale photospheric fields, with particular emphasis on quiet-sun field,
and discuss the implications of several results obtained recently using new
instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure
Implicit weight bias in children age 9 to 11 years
OBJECTIVES: Assess implicit weight bias in children 9 to 11 years old. METHODS: Implicit weight bias was measured in children ages 9 to 11 (N = 114) by using the Affect Misattribution Procedure. Participants were shown a test image of a child for 350 milliseconds followed by a meaningless fractal (200 milliseconds), and then they were asked to rate the fractal image as "good" or "bad." We used 9 image pairs matched on age, race, sex, and activity but differing by weight of the child. Implicit bias was the difference between positive ratings for fractals preceded by an image of a healthy-weight child and positive ratings for fractals preceded by an image of an overweight child. RESULTS: On average, 64% of fractals shown after pictures of healthy-weight children were rated as "good, " compared with 59% of those shown after pictures of overweight children, reflecting an overall implicit bias rate of 5.4% against overweight children (P < .001). Healthy-weight participants showed greater implicit bias than over-and underweight participants (7.9%, 1.4%, and 0.3% respectively; P = .049). CONCLUSIONS: Implicit bias toward overweight individuals is evident in children aged 9 to 11 years with a magnitude of implicit bias (5.4%) similar to that in studies of implicit racial bias among adults
The balance of power: accretion and feedback in stellar mass black holes
In this review we discuss the population of stellar-mass black holes in our
galaxy and beyond, which are the extreme endpoints of massive star evolution.
In particular we focus on how we can attempt to balance the available accretion
energy with feedback to the environment via radiation, jets and winds,
considering also possible contributions to the energy balance from black hole
spin and advection. We review quantitatively the methods which are used to
estimate these quantities, regardless of the details of the astrophysics close
to the black hole. Once these methods have been outlined, we work through an
outburst of a black hole X-ray binary system, estimating the flow of mass and
energy through the different accretion rates and states. While we focus on
feedback from stellar mass black holes in X-ray binary systems, we also
consider the applicability of what we have learned to supermassive black holes
in active galactic nuclei. As an important control sample we also review the
coupling between accretion and feedback in neutron stars, and show that it is
very similar to that observed in black holes, which strongly constrains how
much of the astrophysics of feedback can be unique to black holes.Comment: To be published in Haardt et al. Astrophysical Black Holes. Lecture
Notes in Physics. Springer 201
- …