65 research outputs found

    Neuropsychological Follow-up After Neonatal ECMO

    Get PDF
    OBJECTIVE: To assess the longitudinal development of intelligence and its relation to school abstract performance in a nationwide cohort of neonatal extracorporeal membrane oxygenation (ECMO) survivors and evaluate predictors of outcome at 8 years of age. METHODS: Repeated measurements assessed intelligence of neonatal ECMO survivors at 2, 5, and 8 years (n = 178) with the use of validated, standardized instruments. Selective attention (n = 148) and type of education were evaluated in the 8-year-olds. RESULTS: Intelligence remained stable and average across development (mean ± SD IQ: at 2 years, 102 ± 18; at 5 years, 100 ± 17; and at 8 years, 99 ± 17 [P = .15]). Children attending regular education without the need for help (n

    Two-year neurodevelopmental outcome in children born extremely preterm:the EPI-DAF study

    Get PDF
    OBJECTIVE: In 2010, the Dutch practice regarding initiation of active treatment in extremely preterm infants was lowered from 25 completed weeks' to 24 completed weeks' gestation. The nationwide Extremely Preterm Infants - Dutch Analysis on Follow-up Study was set up to provide up-to-date data on neurodevelopmental outcome at 2 years' corrected age (CA) after this guideline change. Design: National cohort study. PATIENTS: All live born infants between 240/7 weeks' and 266/7 weeks' gestational age who were 2 years' CA in 2018-2020. MAIN OUTCOME MEASURE: Impairment at 2 years' CA, based on cognitive score (Bayley-III-NL), neurological examination and neurosensory function. RESULTS: 651 of 991 live born infants (66%) survived to 2 years' CA, with data available for 554 (85%). Overall, 62% had no impairment, 29% mild impairment and 9% moderate-to-severe impairment (further defined as neurodevelopmental impairment, NDI). The percentage of survivors with NDI was comparable for infants born at 24 weeks', 25 weeks' and 26 weeks' gestation. After multivariable analysis, severe brain injury and low maternal education were associated with higher odds on NDI. NDI-free survival was 48%, 67% and 75% in neonatal intensive care unit (NICU)-admitted infants at 24, 25 and 26 weeks' gestation, respectively. CONCLUSIONS: Lowering the threshold has not been accompanied by a large increase in moderate-to-severely impaired infants. Among live-born and NICU-admitted infants, an increase in NDI-free survival was observed from 24 weeks' to 26 weeks' gestation. This description of a national cohort with high follow-up rates gives an accurate description of the range of outcomes that may occur after extremely preterm birth

    Genomic insights into the conservation status of the world’s last remaining Sumatran rhinoceros populations

    Get PDF
    Highly endangered species like the Sumatran rhinoceros are at risk from inbreeding. Five historical and 16 modern genomes from across the species range show mutational load, but little evidence for local adaptation, suggesting that future inbreeding depression could be mitigated by assisted gene flow among populations. Small populations are often exposed to high inbreeding and mutational load that can increase the risk of extinction. The Sumatran rhinoceros was widespread in Southeast Asia, but is now restricted to small and isolated populations on Sumatra and Borneo, and most likely extinct on the Malay Peninsula. Here, we analyse 5 historical and 16 modern genomes from these populations to investigate the genomic consequences of the recent decline, such as increased inbreeding and mutational load. We find that the Malay Peninsula population experienced increased inbreeding shortly before extirpation, which possibly was accompanied by purging. The populations on Sumatra and Borneo instead show low inbreeding, but high mutational load. The currently small population sizes may thus in the near future lead to inbreeding depression. Moreover, we find little evidence for differences in local adaptation among populations, suggesting that future inbreeding depression could potentially be mitigated by assisted gene flow among populations

    Diagnostic value of anti-cyclic citrullinated peptide antibodies in Greek patients with rheumatoid arthritis

    Get PDF
    Background: Anti-cyclic citrullinated peptide (anti-CCP) antibodies have been of diagnostic value in Northern European Caucasian patients with rheumatoid arthritis ( RA). In these populations, anti-CCP antibodies are associated with the HLA-DRB1 shared epitope. We assessed the diagnostic value of anti-CCP antibodies in Greek patients with RA where the HLA shared epitope was reported in a minority of patients. Methods: Using an enzyme-linked immunosorbent assay ( ELISA) (CCP2) kit, we tested anti-CCP antibodies in serum samples from 155 Greek patients with RA, 178 patients with other rheumatic diseases, and 100 blood donors. We also determined rheumatoid factor (RF) and compared it to anti-CCP antibodies for area under the curve (AUC), sensitivity, specificity and likelihood ratios. Results: Sensitivity of anti-CCP2 antibodies and RF for RA was 63.2% and 59.1%, and specificity was 95.0% and 91.2%, respectively. When considered simultaneously, the AUC for anti-CCP antibodies was 0.90 with 95% CI of 0.87 to 0.93 and the AUC for RF was 0.71 with 95% CI of 0.64 to 0.77. The presence of both antibodies increased specificity to 98.2%. Anti-CCP antibodies were positive in 34.9% of RF-negative RA patients. Anti-CCP antibodies showed a correlation with the radiographic joint damage. Anti-CCP-positive RA patients had increased the swollen joint count and serum CRP concentration compared to anti-CCP-negative RA patients (Mann-Whitney U test, p = 0.01, and p < 0.001, respectively). However, no correlation was found between anti-CCP antibodies and DAS28 score ( r = 0.13, p = 0.12). Conclusion: In Greek patients with RA, anti-CCP2 antibodies exhibit a better diagnostic value than RF and a correlation with radiological joint damage and therefore are useful in everyday rheumatology practice

    Predictive Performance of a Gentamicin Pharmacokinetic Model in Term Neonates with Perinatal Asphyxia Undergoing Controlled Therapeutic Hypothermia

    Get PDF
    Background:Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH.Methods:The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed.Results:The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters.Conclusions:The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.</p

    Predictive Performance of a Gentamicin Pharmacokinetic Model in Term Neonates with Perinatal Asphyxia Undergoing Controlled Therapeutic Hypothermia

    Get PDF
    Background:Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH.Methods:The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed.Results:The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters.Conclusions:The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.</p

    Neurodevelopmental outcome at 5.5 years in Dutch preterm infants born at 24–26 weeks’ gestational age: the EPI-DAF study

    Get PDF
    Objective After lowering the Dutch threshold for active treatment from 25 to 24 completed weeks’ gestation, survival to discharge increased by 10% in extremely preterm live born infants. Now that this guideline has been implemented, an accurate description of neurodevelopmental outcome at school age is needed. Design Population-based cohort study. Setting All neonatal intensive care units in the Netherlands. Patients All infants born between 240/7 and 266/7 weeks’ gestation who were 5.5 years’ corrected age (CA) in 2018–2020 were included. Main outcome measures Main outcome measure was neurodevelopmental outcome at 5.5 years. Neurodevelopmental outcome was a composite outcome defined as none, mild or moderate-to-severe impairment (further defined as neurodevelopmental impairment (NDI)), using corrected cognitive score (Wechsler Preschool and Primary Scale of Intelligence Scale-III-NL), neurological examination and neurosensory function. Additionally, motor score (Movement Assessment Battery for Children-2-NL) was assessed. All assessments were done as part of the nationwide, standardised follow-up programme. Results In the 3-year period, a total of 632 infants survived to 5.5 years’ CA. Data were available for 484 infants (77%). At 5.5 years’ CA, most cognitive and motor (sub)scales were significantly lower compared with the normative mean. Overall, 46% had no impairment, 36% had mild impairment and 18% had NDI. NDI-free survival was 30%, 49% and 67% in live born children at 24, 25 and 26 weeks’ gestation, respectively (p<0.001). Conclusions After lowering the threshold for supporting active treatment from 25 to 24 completed weeks’ gestation, a considerable proportion of the surviving extremely preterm children did not have any impairment at 5.5 years’ CA

    Phenobarbital, midazolam pharmacokinetics, effectiveness, and drug-drug interaction in asphyxiated neonates undergoing therapeutic hypothermia

    Get PDF
    Background: Phenobarbital and midazolam are commonly used drugs in (near-)term neonates treated with therapeutic hypothermia for hypoxic-ischaemic encephalopathy, for sedation, and/or as anti-epileptic drug. Phenobarbital is an inducer of cytochrome P450 (CYP) 3A, while midazolam is a CYP3A substrate. Therefore, co-treatment with phenobarbital might impact midazolam clearance. Objectives: To assess pharmacokinetics and clinical anti-epileptic effectiveness of phenobarbital and midazolam in asphyxiated neonates and to develop dosing guidelines. Methods: Data were collected in the prospective multicentre PharmaCool study. In the present study, neonates treated with therapeutic hypothermia and receiving midazolam and/or phenobarbital were included. Plasma concentrations of phenobarbital and midazolam including its metabolites were determined in blood samples drawn on days 2–5 after birth. Pharmacokinetic analyses were performed using non-linear mixed effects modelling; clinical effectiveness was defined as no use of additional anti-epileptic drugs. Results: Data were available from 113 (phenobarbital) and 118 (midazolam) neonates; 68 were treated with both medications. Only clearance of 1-hydroxy midazolam was influenced by hypothermia. Phenobarbital co-administration increased midazolam clearance by a factor 2.3 (95% CI 1.9–2.9, p < 0.05). Anticonvulsant effectiveness was 65.5% for phenobarbital and 37.1% for add-on midazolam. Conclusions: Therapeutic hypothermia does not influence clearance of phenobarbital or midazolam in (near-)term neonates with hypoxic-ischaemic encephalopathy. A phenobarbital dose of 30 mg/kg is advised to reach therapeutic concentrations. Phenobarbital co-administration significantly increased midazolam clearance. Should phenobarbital be substituted by non-CYP3A inducers as first-line anticonvulsant, a 50% lower midazolam maintenance dose might be appropriate to avoid excessive exposure during the first days after birth. © 2019 The Author(s) Published by S. Karger AG, Base

    Neuronal nicotinic acetylcholine receptor antibodies in autoimmune central nervous system disorders

    Get PDF
    BackgroundNeuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the central nervous system (CNS), playing critical roles in brain function. Antigenicity of nAChRs has been well demonstrated with antibodies to ganglionic AChR subtypes (i.e., subunit α3 of α3β4-nAChR) and muscle AChR autoantibodies, thus making nAChRs candidate autoantigens in autoimmune CNS disorders. Antibodies to several membrane receptors, like NMDAR, have been identified in autoimmune encephalitis syndromes (AES), but many AES patients have yet to be unidentified for autoantibodies. This study aimed to develop of a cell-based assay (CBA) that selectively detects potentially pathogenic antibodies to subunits of the major nAChR subtypes (α4β2- and α7-nAChRs) and its use for the identification of such antibodies in “orphan” AES cases.MethodsThe study involved screening of sera derived from 1752 patients from Greece, Turkey and Italy, who requested testing for AES-associated antibodies, and from 1203 “control” patients with other neuropsychiatric diseases, from the same countries or from Germany. A sensitive live-CBA with α4β2-or α7-nAChR–transfected cells was developed to detect antibodies against extracellular domains of nAChR major subunits. Flow cytometry (FACS) was performed to confirm the CBA findings and indirect immunohistochemistry (IHC) to investigate serum autoantibodies’ binding to rat brain tissue.ResultsThree patients were found to be positive for serum antibodies against nAChR α4 subunit by CBA and the presence of the specific antibodies was quantitatively confirmed by FACS. We detected specific binding of patient‐derived serum anti‐nAChR α4 subunit antibodies to rat cerebellum and hippocampus tissue. No serum antibodies bound to the α7-nAChR-transfected or control-transfected cells, and no control serum antibodies bound to the transfected cells. All patients positive for serum anti‐nAChRs α4 subunit antibodies were negative for other AES-associated antibodies. All three of the anti‐nAChR α4 subunit serum antibody-positive patients fall into the AES spectrum, with one having Rasmussen encephalitis, another autoimmune meningoencephalomyelitis and another being diagnosed with possible autoimmune encephalitis.ConclusionThis study lends credence to the hypothesis that the major nAChR subunits are autoimmune targets in some cases of AES and establishes a sensitive live-CBA for the identification of such patients
    corecore