14,750 research outputs found
Escape Orbits for Non-Compact Flat Billiards
It is proven that, under some conditions on , the non-compact flat
billiard
has no orbits going {\em directly} to . The relevance of such
sufficient conditions is discussed.Comment: 9 pages, LaTeX, 3 postscript figures available at
http://www.princeton.edu/~marco/papers/ . Minor changes since previously
posted version. Submitted to 'Chaos
Possible field-tuned SIT in high-Tc superconductors: implications for pairing at high magnetic fields
The behavior of some high temperature superconductors (HTSC) such as and , at very high
magnetic field, is similar to that of thin films of amorphous InOx near the
magnetic field-tuned superconductor-insulator transition. Analyzing the InOx
data at high fields in terms of persisting local pairing amplitude, we argue by
analogy that local pairing amplitude also persists well into the dissipative
state of the HTSCs, the regime commonly denoted as the "normal state" in very
high magnetic field experiments.Comment: Revised figures and reference
The approach to a superconductor-to-Bose-insulator transition in disordered films
Through a detailed study of scaling near the magnetic field-tuned
superconductor-to-insulator transition in strongly disordered films, we find
that results for a variety of materials can be collapsed onto a single phase
diagram. The data display two clear branches, one with weak disorder and an
intervening metallic phase, the other with strong disorder. Along the strongly
disordered branch, the resistance at the critical point approaches and the scaling of the resistance is consistent with quantum
percolation, and therefore with the predictions of the dirty boson model.Comment: 4 pages, 4 figure
Constraints on the density dependence of the symmetry energy
Collisions involving 112Sn and 124Sn nuclei have been simulated with the
improved Quantum Molecular Dynamics transport model. The results of the
calculations reproduce isospin diffusion data from two different observables
and the ratios of neutron and proton spectra. By comparing these data to
calculations performed over a range of symmetry energies at saturation density
and different representations of the density dependence of the symmetry energy,
constraints on the density dependence of the symmetry energy at sub-normal
density are obtained. Results from present work are compared to constraints put
forward in other recent analysis.Comment: 8 pages, 4 figures,accepted for publication in Phy. Rev. Let
Preparation and properties of amorphous MgB/MgO superstructures: A new model disordered superconductor
In this paper we introduce a novel method for fabricating MgB/MgO
multilayers and demonstrate the potential for using them as a new model for
disordered superconductors. In this approach we control the annealing of the
MgB to yield an interesting new class of disordered (amorphous)
superconductors with relatively high transition temperatures. The multilayers
appear to exhibit quasi-two-dimensional superconductivity with controlled
anisotropy. We discuss the properties of the multilayers as the thickness of
the components of the bilayers vary.Comment: 7 pages, 8 figure
Teleportation: from probability distributions to quantum states
The role of the off-diagonal density matrix elements of the entangled pair is
investigated in quantum teleportation of a qbit. The dependence between them
and the off-diagonal elements of the teleported density matrix is shown to be
linear. In this way the ideal quantum teleportation is related to an entirely
classical communication protocol: the one-time pad cypher. The latter can be
regarded as the classical counterpart of Bennett's quantum teleportation
scheme. The quantum-to-classical transition is demonstrated on the statistics
of a gedankenexperiment.Comment: 11 pages, 1 figure, accepted for publication in J. Phys. A (Math.
Gen.
SIPS - Screening-Instrument für prämenstruelle Symptome*: Die deutsche Version des Premenstrual Symptoms Screening Tool zur Erfassung klinisch relevanter Beschwerden
Zusammenfassung: Hintergrund: Prämenstruelle dysphorische Störungen (PMDS) und schwere prämenstruelle Syndrome (PMS) treten häufig auf, bleiben jedoch oft unerkannt und unbehandelt. Begünstigt wird dies durch das Fehlen eines entsprechenden deutschsprachigen Screening-Instruments. Ziel dieser Studie war es, das englischsprachige Premenstrual Symptoms Screening Tool (PSST) ins Deutsche zu übertragen und seine Anwendung zu prüfen. Material und Methoden: Die deutschsprachige Version des PSST wurde als "Screening-Instrument für prämenstruelle Symptome" (SIPS) erstellt und ihre Güte an 47 Frauen mit und ohne PMDS/schwerem PMS internetbasiert mittels täglichen Symptomeinschätzungen bestimmt. Ergebnisse: Die Retest-Reliabilität des SIPS betrug r=0,69, das Cronbachsα 0,924. Als Validitätsmaß des SIPS zeigten sich signifikante Unterschiede zwischen Frauen mit und ohne PMDS/schwerem PMS, bestimmt durch das SIPS, bezüglich prospektiv erfasster prämenstrueller Symptomatik (F[2,44]=4,52, p<0,001) und Symptomveränderung (F[2,44]=25,23, p<0,001). Schlussfolgerung: Das SIPS ist reliabel und valide und kann helfen, Frauen mit behandlungsbedürftigen prämenstruellen Beschwerden zu identifiziere
On The Evolution of Magnetic White Dwarfs
We present the first radiation magnetohydrodynamics simulations of the
atmosphere of white dwarf stars. We demonstrate that convective energy transfer
is seriously impeded by magnetic fields when the plasma-beta parameter, the
thermal to magnetic pressure ratio, becomes smaller than unity. The critical
field strength that inhibits convection in the photosphere of white dwarfs is
in the range B = 1-50 kG, which is much smaller than the typical 1-1000 MG
field strengths observed in magnetic white dwarfs, implying that these objects
have radiative atmospheres. We have then employed evolutionary models to study
the cooling process of high-field magnetic white dwarfs, where convection is
entirely suppressed during the full evolution (B > 10 MG). We find that the
inhibition of convection has no effect on cooling rates until the effective
temperature (Teff) reaches a value of around 5500 K. In this regime, the
standard convective sequences start to deviate from the ones without convection
owing to the convective coupling between the outer layers and the degenerate
reservoir of thermal energy. Since no magnetic white dwarfs are currently known
at the low temperatures where this coupling significantly changes the
evolution, effects of magnetism on cooling rates are not expected to be
observed. This result contrasts with a recent suggestion that magnetic white
dwarfs with Teff < 10,000 K cool significantly slower than non-magnetic
degenerates.Comment: 11 pages, 12 figures, accepted for publication in the Astrophysical
Journa
- …